• Title/Summary/Keyword: Epoxy composites

Search Result 1,050, Processing Time 0.027 seconds

Influences of Liquid Rubber on the Surfacial and Mechanical Properties of Epoxy Composites (에폭시 복합체의 표면 및 기계적 특성에 미치는 액상고무의 효과)

  • Choi, Sei-Young;Chu, Jeoung-Min;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • Epoxy resins are thermoset polymers that exhibit good adhesion, creep resistance, heat resistance, and chemical resistance. These polymers, however, give poor resistance to crack propagation and low impact strength. In this study, epoxy/carboxyl-terminated butadiene acrylonitrile (CTBN) and epoxy/amine-terminated butadiene acrylonitrile (ATBN) composites were prepared with different ratio of CTBN and ATBN to improve low impact strength of epoxy resin. The impact strength of epoxy/elastomeric composites shows high values with increasting nonpolar surface free energy while the tensile strength and the glass transition are decreased. The highest surface free energy, impact strength observed when 15 phr CTBN and 15 phr ATBN added, respectively. It can be concluded that as liquid rubber to improve impact strength of epoxy resin, ATBN is more preferable to CTBN.

A Study on the Improvement of Microcrack Resistance of Carbon/Epoxy Composites at Cryogenic Temperature (극저온에서 탄소 섬유/에폭시 복합재료의 군열 저항성 향상에 관한 연구)

  • Hong, Joong-Sik;Kim, Myung-Gon;Kim, Chun-Gon;Kong, Cheol-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.49-52
    • /
    • 2005
  • In the development of a propellant tank using liquid oxygen and liquid hydrogen, the improvement of microcrack resistance of carbon/epoxy composites is necessary for the application of a composite material to tank structures. In this research, two types of carbon/epoxy composites with different matrix systems were tested to measure interlaminar shear strength (ILSS), one of the material properties to evaluate fiber-matrix interface adhesion indirectly. Short beam specimens were tested inside an environmental chamber at room temperature(RT) and at cryogenic temperature( - 150 $^{\circ}C$) respectively. Results showed that the matrix system with large amount of bisphenol-A and CTBN modified rubber had good performance at cryogenic temperature.

  • PDF

Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composites for Tilting Train Carbody (틸팅열차 차체8 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가)

  • Yoon Sung-Ho;Lee Eun-Dong;Heo Kwang-Soo;Jung Jeong-Cheol;Shin Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.195-201
    • /
    • 2005
  • Mode II interlaminar fracture behaviors of carbon fabric/epoxy composites, which are applicable to tilting train carbodies, was investigated by the ENF (End notched flexure) test. The specimens were made of CF3327 plain woven fabric with epoxy and a starter delamination at one end was made by inserting Teflon film with the thickness of 12.5$mu$m or 25.0$mu$m. The equation for mode II interlaminar fracture toughness was suggested based on the effective crack length from the compliance of load-displacement curve. Mode II interlaminar fracture toughness was evaluated for several types of the specimens. Also crack propagating behaviors and fracture surfaces were examined through an optical travelling scope and a scanning electron microscope.

The Properties of DSC and DMA for Epoxy Nano-and-Micro Mixture Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.69-72
    • /
    • 2010
  • This study investigates the thermal and mechanical properties of insulation elements through the mixing of epoxy based micro and nano particles. Regarding their thermal properties, differential scanning calorimeter and dynamic mechanical analyser were used to calculate the cross-linking densities for various types of insulation elements. The mechanical properties of the bending strength, the shape and scale parameters, were obtained using the Weibull plot. This study obtained the best results in the scale parameters, at 0.5 phr, for the bending strength of the epoxy nano-and-micro mixture composites.

Effect of Silica Content on the Dielectric Properties of Epoxy/Crystalline Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.322-325
    • /
    • 2012
  • Crystalline silica was synthesized by annealing amorphous silica at $1,300^{\circ}C$ or $1,400^{\circ}C$ for various times, and the crystallinity was estimated by X-ray diffraction (XRD) analysis. In order to prepare a low dielectric material, epoxy/crystalline silica composites were prepared, and the effect of silica content on the dielectric properties was studied under various functions of frequency and ambient temperature. The dielectric constant decreased with increasing crystalline silica content in the epoxy composites, and it also decreased with increasing frequency. At 120 Hz, the value of 5 wt% silica decreased by 0.25 compared to that of 40 wt% silica, and at 23 kHz, the value of 5 wt% silica decreased by 0.23 compared to that of 40 wt% silica. The value increased with increasing ambient temperature.

Influence of Oxyfluorination on Physicochemical Characteristics of Carbon Fibers and their Reinforced Epoxy Composites

  • Seo, Min-Kang;Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.430-435
    • /
    • 2009
  • The effect of oxyfluorination temperature on the surface properties of carbon fibers and their reinforced epoxy composites was investigated. Infrared (IR) spectroscopy results for the oxyfluorinated carbon fibers revealed carboxyl/ester (C=O) and hydroxyl (O-H) groups at 1632 and 3450 $cm^{-1}$, respectively, and that the oxyfluorinated carbon fibers had a higher O-H peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results indicated that after oxyfluorination, graphitic carbon was the major carbon functional component on the carbon fiber surfaces, while other functional groups present were C-O, C=O, HO-C=O, and $C-F_x$. These components improved the impact properties of oxyfluorinated carbon fibers-reinforced epoxy composites by improving the interfacial adhesion between the carbon fibers and the epoxy matrix resins.

Thermal, Mechanical, and Electrical Properties for EMNC_60 and EMNC_65 (EMNC_60과 EMNC_65에 대한 열적, 기계적, 전기적 특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.895-901
    • /
    • 2012
  • In order to application for high voltage heavy electric equipments, epoxy/microsilica 60 wt%/nano layered silicate composites (EMNC_60) and epoxy/microsilica 65 wt%/nano layered silicate composites (EMNC_65) respectively was synthesized by our electric field dispersion method and the result was obtained completely dispersion state. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanical properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. The study on thermal property, EMNC_65 was better than EMNC_60 and mechanical, electrical properties much improved EMNC_60 compared with EMNC_65.

Impacts of halloysite clay nanoparticles on the structural and γ-ray shielding properties of the epoxy resin

  • K.G. Mahmoud;M.I. Sayyed;S. Hashim;Aljawhara H. Almuqrin;Abu El-Soad A.M
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1585-1590
    • /
    • 2023
  • In this study, halloysite nanoparticles-doped epoxy resin was synthesised using the casting method. The MH-300A density metre revealed that the density of the fabricated composites changed from 1.132 to 1.317 g/cm3 as the halloysite nanoparticle concentration increased. The Fourier transform infrared was recorded for the synthesised composites. Furthermore, the γ-ray shielding properties of the synthesised composites were evaluated using Monte Carlo simulation and a theoretical programme, XCOM. The linear attenuation coefficient of the epoxy resin increased by 43% (at γ-energy of 15 keV) and 14% (at γ-photon energy of 662 keV) when the concentration of the halloysite nanoparticles was increased from 0 wt% to 40 wt%, respectively.

A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle (대용량 SiC 나노입자 강화 에폭시 복합재료의 새로운 분산방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • SiC nanoparticles were used to increase flexural properties of polymer matrix. This study was to manufacture huge concentration SiC nanoparticle/epoxy composites and to evaluate the dispersion. During mixing SiC nanoparticle and epoxy, 20 wt% SiC nanoparticle in total composites was used with both stirrer and sonication equipment together. Mixing speed and dispersion were improved with the method by using both stirrer and sonication equipment at the same time via mechanical test and FE-SEM. Based on the results, modeling of SiC nanoparticle dispersion could be established. Ultimately, unidirectional carbon fiber reinforced composites was manufactured using 20 wt% SiC nanoparticle/epoxy. Mechanical property of CFRP using dual stirrer and sonication mixing method was better than composites by single sonication mixing method.

Fabrication and Evaluation of Wear Properties of CF/GNP Composites (Graphene Nanoplatelets을 첨가한 탄소직조복합재료의 제조 및 마모 특성 평가)

  • Kim, S.J.;Park, S.B.;Huh, C.H.;Song, J.I.
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • CNT and GNP have several excellent mechanical properties including, high strength, Young's modulus, thermal conductivity, corrosion resistance, electronic shielding and so on. In this study, CF/CNT, GNP/epoxy composites were manufactured by varying the CNT weight ratio at 2wt% and 3wt%, GNP weight ratio at 0.5wt% and 1 wt%. The composites were manufactured by mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D638, D256 and D3181 respectively. The results showed that, CF/GNP0.5 wt%/epoxy composites gave good mechanical property in all composites, e.g., tensile strength, impact and were resistance.