DOI QR코드

DOI QR Code

Thermal, Mechanical, and Electrical Properties for EMNC_60 and EMNC_65

EMNC_60과 EMNC_65에 대한 열적, 기계적, 전기적 특성 연구

  • Park, Jae-Jun (Department of Electrical Electronic Engineering, Joongbu University)
  • 박재준 (중부대학교 전기전자공학과)
  • Received : 2012.08.13
  • Accepted : 2012.10.18
  • Published : 2012.11.01

Abstract

In order to application for high voltage heavy electric equipments, epoxy/microsilica 60 wt%/nano layered silicate composites (EMNC_60) and epoxy/microsilica 65 wt%/nano layered silicate composites (EMNC_65) respectively was synthesized by our electric field dispersion method and the result was obtained completely dispersion state. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanical properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. The study on thermal property, EMNC_65 was better than EMNC_60 and mechanical, electrical properties much improved EMNC_60 compared with EMNC_65.

Keywords

References

  1. J. Y. Lee, M. J. Shim, and S. W. Kim, Polym. Eng. Sci., 39,1993(1999) https://doi.org/10.1002/pen.11592
  2. T. Seckin, A. Gultek, M. G. Icduygu, and Y. Onal, J. Appl. Polym. Sci., 84, 164 (2002). https://doi.org/10.1002/app.10289
  3. F. Lin, G. S. Bhatia, and J. D. Ford, J. Appl. Polym. Sci., 49, 1901 (1993). https://doi.org/10.1002/app.1993.070491105
  4. J. Y. Lee and H. K. Lee, Mater. Chem. Phys., 85, 410 (2004). https://doi.org/10.1016/j.matchemphys.2004.01.032
  5. D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002). https://doi.org/10.1002/app.10166
  6. L. Zhang, Y. Wang, Y. Wang, Y. Sui, and D. Yu, J. Appl. Polym. Sci., 78, 1873 (2000). https://doi.org/10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8
  7. K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigler, and J. Varlet, J. Polym. Sci.: Part B39, 1360 (2001).
  8. J. J. Park, S. S. Kwon, and J. Y. Lee, Trans. Electr. Electron. Mater., 12, 135 (2011). https://doi.org/10.4313/TEEM.2011.12.4.135
  9. T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 445 (2006). https://doi.org/10.1109/TDEI.2006.1624291
  10. C. Zou, J. C. Fothergill, and S. W. Rowe, IEEE Trans. Dielectr. Electr. Insul., 15, 106 (2008). https://doi.org/10.1109/T-DEI.2008.4446741
  11. J. J. Park, C. H. Lee, J. Y. Lee, and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011) https://doi.org/10.1109/TDEI.2011.5931051
  12. J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul., 17, 1516 (2010). https://doi.org/10.1109/TDEI.2010.5595553
  13. R. Sarathi, R. K. Sahu, and P. Rajeshkumar, Mat. Sci. Eng., A445, 567 (2007).
  14. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 319 (2006). https://doi.org/10.1109/TDEI.2006.1624276
  15. L. E. Nielsen, Particulate-filled Materials (Marcel Dekker, New York, 1974) p. 379.
  16. J. K. Nelson and J. C. Fothergill, Nanotechnology, 15, 586 (2004). https://doi.org/10.1088/0957-4484/15/5/032
  17. S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul., 15, 12 (2008). https://doi.org/10.1109/T-DEI.2008.4446732