• 제목/요약/키워드: Epoxy/EPDM Interface

검색결과 12건 처리시간 0.024초

도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연파괴 특성에 관한 연구 (A Study on the AC Interfacial Breakdown Properties of the Interface between Epoxy/EPDM with Variation of the Spread Oil)

  • 배덕권;정일형;오재한;박우현;이기식;김충혁;이준웅
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권8호
    • /
    • pp.445-450
    • /
    • 2000
  • Many successful developments and microscopic studies have been made on the high quality insulating materials. However, a little attention have given to the macroscopic interface in HV(High Voltage) insulating systems. In this study, AC interfacial breakdown strength and V-t characteristic of the interface between Epoxy/EPDM(ethylene propylene diene terpolymer) are investigated. Electrode system is designed to reduce the charges from electrodes and to have the tangential potentials along the interface between Epoxy/EPDM by FEM(finite elements method). The AC breakdown strength is observed when HV is given to the interface. It is shown that AC interfacial breakdown strength is improved by increasing interfacial pressure and oiling. In particular, it was saturated at certain interfacial pressure level. V-t characteristic is able to extend to the life time of the interface between Epoxy/EPDM. Oiling also plays a good roll in prolongation of the life time.

  • PDF

Epoxy/EPDM 이종절연물의 계면조건에 따른 계면절연파괴특성의 분석 및 시뮬레이션에 관한 연구 (A study on the analysis and simulation of interfacial breakdown properties with interfacial condition in Epoxy/EPDM)

  • 정인재;박성민;김영식;김상걸;장인범;김용주;이준응
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.227-230
    • /
    • 1998
  • The interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joint. In order to better understand this phenomenon, breakdown experiments were performed for each interfacial condition at Epoxt/EPDM interface found in cable. The specimen were Epoxy resin and EPDM generally used in cable joint. The interface conditions were three parts. First condition was the pressure of interface, we used the value of 1, 2, 3, 4, 5[kg/cm$^2$]. For the second condition, the sanding condition was treated with sand paper #220, #600, #1200. Finally, we observed the breakdown according to the presence of silicon oil at the interface.

  • PDF

Epoxy/EPDM 거시계면의 최적조건과 V-t 특성 (Optimal Pressure Condition and V-t Characteristic of Macro Interface between Epoxy and EPDM)

  • 박우현;이동규;이상극;안준호;김충혁;이기식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.439-442
    • /
    • 2002
  • The interface between two different materials in the insulation systems is the weak-link in the underground power transmission systems, In this paper, Optimum conditions of the interface between Epoxy and EPDM is studied. The variation factor condition of interface is roughness of surface, spreading of oils, interfacial pressure and temperature. The breakdown times under the constant voltage below the breakdown voltage were also gained. The breakdown voltage at the after laying time equivalent to is calculated by the V-t characteristic and the inverse power law. When this is done, the characteristic life exponent n is used and the long time breakdown voltage can be evaluated.

  • PDF

온도에 따른 케이블 직선 접속재 모델링 EPOXY/EPDM 계면의 파괴 특성에 관한 연구 (A study on analysis of interfacial breakdown properties with variable temperalure in straight cable Joint modeling EPGXY/EPOM interface)

  • 배덕권;정인재;김상걸;정일형;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.532-535
    • /
    • 1999
  • In power cable joints, the interfaces of two different dielectric materials are inevitable. In addition, the interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joints. We chose epoxy/EPDM interface, one of the interface in cable joints, and investigate dielectric interfacial breakdown phenomenon. First, design specimen with Flux 2D. Second, find interface condition which has high dielectric strength. Third, investigate interfacial breakdown properties with variable temperature.

  • PDF

도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연 파괴 특성에 관한 연구 (A Study on the AC Interfacial Breakdown Properities of the Interface between Epoxy/EPDM with the variation of spreaded oil)

  • 배덕권;이수길;정일형;이준웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.897-899
    • /
    • 1999
  • In this paper, the interfacial dielectric breakdown phenomenon of interface between Epoxy/EPDM (ethylene propylene diene terpolymer) was discussed, which affects stability of insulation system of power delivery devices. Specimen structure was designed by using MAGSOFT's FLUX2D based on the finite elements method. Design concepts is to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the Epoxy/EPDM interface. AC interfacial breakdown phenomenon of was investigated by variation of interfacial conditions oil and temperature which are supposed to have influence on the interfacial breakdown strength. Interfacial breakdown strength was improved by spreading oil over interfacial surface. The decreasing ratio of the AC interfacial breakdown strength in non-oiled specimens was increased by the temperature rising and its of oiled specimens was not affected by temperature.

  • PDF

계면조건에 따른 에폭시와 고무 거시계면의 절연내력 (Dielectric Strength of Macro Interface between Epoxy and Rubber According to the Interface Condition)

  • 오용철;배덕권;김진사;김충혁
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권12호
    • /
    • pp.581-585
    • /
    • 2006
  • Macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably in the complex insulation system using in extra high voltage (EHV) electric devices. In this paper, Interface between epoxy and ethylene propylene diene terpolymer (EPDM) was selected as an interface in electrical insulation system and the AC dielectric strength of the interface was investigated. Air compress system was used to give pressure to the interface. Specimens were prepared in various ways to generate different surface conditions for each type of interface. Increasing interfacial pressure, decreasing surface roughness and spreading oil over surfaces improve the AC interfacial dielectric strength. Especially, the dielectric strength was saturated at certain interfacial pressure.

Epoxy/EPDM계면의 최적처리 조건과 수명 예측 (The Optiomun Treatment Conditions an the Estimation of Life in the Interface between Epoxy/EPDM)

  • 오재한;배덕권;최운식;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1978-1980
    • /
    • 2000
  • Because the interfaces between two different materials are the weak-link in the underground power transmission systems, they affects the stability of insulation systems. In this paper, Epoxy/EPDM interface is selected and investigated the optimum condition by variation of interfacial conditions such as roughness of surface, spreading of oils, interfacial pressure and temperature. The breakdown times under the constant voltage below the breakdown voltage were also gamed. The breakdown voltage at the after laying time equivalent to is calculated by the V-t characteristic and the inverse power law. When this is done. the characteristic life exponent n is used and the long time breakdown voltage can be evaluated.

  • PDF

에폭시/고무 거시계면에서 장시간 절연파괴전압에 대한 연구 (Study on the Long Time Breakdown Voltage in the Macro Interface between Epoxy and Rubber)

  • 박우현;이기식
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.1003-1008
    • /
    • 2002
  • In this paper, the estimation of lifetime with the various conditions of the interface between toughened epoxy and rubber which are consisting materials of underground power delivery system has been studied. After the measurement of the short time AC interfacial breakdown strength on macro interfaces at room temperature, the breakdown time at several voltages were measured under the constant voltages lower than the short time breakdown voltage. The long time breakdown voltage was calculated by using Inverse Power Law. Two types of interfaces was studied. One was the interface between toughened epoxy and EPDM(Ethylene Prorylene Diene Terpolymer). The other was the interface between toughened epoxy and silicon rubber. Interfacial pressure and roughness of interfaces was determined through the characteristic of short time AC interfacial breakdown strength. Oil condition was no oiled, low viscosity oiled and high viscosity oiled. High viscosity oiled interface between Toughened epoxy and silicon rubber had the best lifetime exponent, 20.69. and the breakdown voltage of this interface after 30 years was evaluated 19.27㎸.

표면조건에 따른 에폭시/고무 계면의 V-t 특성에 관한 연구 (Study on the V-t Characteristics of the Interface between Epoxy and Rubber According to the Condition of Surfaces)

  • 배덕권;김충혁;오용철;김진사;신철기;이성일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.174-175
    • /
    • 2006
  • In this paper, AC dielectric strength of the interface between Epoxy and EPDM (ethylene propylene diene terpolymer) was investigated. Air compress system was used to give pressure to the interface. Specimens were prepared in various ways to generate different surface conditions for each type of interface. Increasing interfacial pressure, decreasing surface roughness and spreading oil over surfaces improve the AC interfacial dielectric strength. Especially, the dielectric strength was saturated at certain interfacial pressure.

  • PDF

V-t 특성 분석에 의한 고체 거시계면의 수명 평가 (Prediction of Life-Time on the Macroscopic Interface between Solid Materials with Analysis of V-t Characteristics)

  • 오재한;이경섭;배덕권;김충혁;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제13권7호
    • /
    • pp.607-611
    • /
    • 2000
  • The characteristics on the interface between Epoxy and EPDM which are materials of the underground insulation systems of power delivery have studied. The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law and the long breakdown life time can be evaluated. AC breakdown strength and life time is improved by oiling to the interface. When the low viscosity oil is spread interface has the highest life time.

  • PDF