• Title/Summary/Keyword: Enzyme detergent

Search Result 81, Processing Time 0.032 seconds

Cleaning Effect of Papermaking Felt with Enzymes (효소에 의한 초지용 펠트의 세척효과)

  • Yoon, Byung-Tae;Kim, Seong-Bo;Eom, Tae-Jin;Choi, Myoung-Jae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.17-22
    • /
    • 2005
  • The cleaning efficiency of papermaking felt which is contaminated with fiber fines and various micro-materials was investigated and compared between the application of enzyme and commercial detergent. It was found that the cleaning efficiency by the treatment of acidic-based detergent was more efficient than that of alkaline-based one in the conventional commercial detergent. it was also observed that the treatment design of first acidic-based detergent treatment to second alkaline-based detergent procedure was better in the cleaning efficiency, compared to alkaline based-to-acidic based one. The cleaning property of felt with enzyme was resulted in good cleaning efficiency, without any addition of surfactant. Especially, the enzyme treatment under alkaline condition (pH 10) showed a better cleaning result than that under acidic condition(pH 5). The addition of nonionic surfactant to the enzyme increased the cleaning efficiency of felt and decreased the cationic demand of wastewater. These results showed more favour than the application of conventional commercial detergent.

Halomonas sp. ES-10균주가 생산하는 효소세제용 알칼리성 Protease

  • 김찬조;이재숙;최성현;오만진
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.51-55
    • /
    • 1997
  • To utilize the alkaline protease produced by Halomonas sp. ES-10 as an enzyme detergent, the crude enzyme was obtained by methanol precipitation and lyophilization. And it was processed to coated enzyme.The best mixing ratio of components such as coated enzyme, builders, actives, fillers and adjuvants on detergency was examined, and temperature and pH influencing detergency were also tested. Detergency test 0.15% detergent solution was carried out on EMPA test cloth #116 with shaking(90 rpm) for 10 min after 30 min of pretreatment. The detergent which contained coated-enzyme 1%, Zeolite 4A 20%, Tween 80 1. 5%, sodium borate 30%, sodium meta silicate 7.5% and water 40% showed about 90% of washing efficiency at 40$\circ $C and pH 10.0.

  • PDF

Evaluating Bleaching Effects of a Sodium Percarbonate in the Washing Process with Enzyme Containing Detergents (효소세제에 첨가한 과탄산나트륨이 세척효과에 미치는 영향)

  • 정혜원;유지혜;방종호
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.7
    • /
    • pp.1085-1092
    • /
    • 2002
  • Changes in laundering habits and the efficacy claims made for oxygen bleach added to detergents necessitate a deeper investigation into the testing of the washing efficacy of detergents and washing process. The effect of the addition of a sodium percarbonate and bleach activator TAED to an enzyme containing detergent on the soil removal and antimicrobial properties were investigated with the measuring of residual H$_2$O$_2$. The addition of sodium percarbonates to enzyme containing detergent lowered the soil removal of EMPA 116 cloth. But sodium percarbonates had greater effects on that of colored stained cloths such as EMPA 115 and artificially soiled with wine and red pepper while they were presoaked at 20$^{\circ}C$ or higher for So minutes or longer. Most of hydrogen peroxide was remained after washing. Over 99.9% of Staphylococcus aureus on the cotton cloth was removed in every washing solutions, but the cloth washed with enzyme containing detergent or detergent with oxygen bleach didn't show the antimicrobial property.

Studies on Amylase and Protease as an Additive Material to the Synthetic Detergent (세제 배합용 Amylase 및 Protease 에 관한 연구)

  • Kim, Yu-Sam;Hong, Yun-Myung;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.38-42
    • /
    • 1970
  • The crude enzyme, tamylase, was produced by cultivating the Bacillus subtilis on wheat bran. It is composed of amylase and protease, and can be used as an additive material to the synthetic detergent, Suny which is manufactured by Ae-kyung Oil and Fat Co. Amylase activity of the enzyme as an additive material to the synthetic detergent; 1. is decreased by increasing the amount of detergent. But inhibitory rate under the practical used concentration of detergent is less than ten percents. 2. have optimal temperature at $ 40^{\circ}C$. 3. have optimal pH of substrate on pH $5{\sim}6.5$. 4. is inhibited by $Fe^{+++}$. When enzyme and detergent are mixed both as powder, the enzyme is good for storage. Proteolytic activity is good at the practical used concentration of the detergent, but it is inhibited by strong concentration.

  • PDF

Alkaline Protease Production from Bacillus gibsonii 6BS15-4 Using Dairy Effluent and Its Characterization as a Laundry Detergent Additive

  • Polson Mahakhan;Patapee Apiso;Kannika Srisunthorn;Kanit Vichitphan;Sukanda Vichitphan;Sukrita Punyauppa-path;Jutaporn Sawaengkaew
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.195-202
    • /
    • 2023
  • Protease is a widely used enzyme particularly in the detergent industry. In this research, we aimed to isolate alkaline protease-producing bacteria for characterization as a laundry detergent additive. The screening of alkaline protease production was investigated on basal medium agar plus 1% skim milk at pH 11, with incubation at 30℃. The highest alkaline protease-producing bacterium was 6BS15-4 strain, identified as Bacillus gibsonii by 16S rRNA gene sequencing. While the optimum pH was 12.0, the strain was stable at pH range 7.0-12.0 when incubated at 45℃ for 60 min. The alkaline protease produced by B. gibsonii 6BS15-4 using dairy effluent was characterized. The optimum temperature was 60℃ and the enzyme was stable at 55℃ when incubated at pH 11.0 for 60 min. Metal ions K+, Mg2+, Cu2+, Na+, and Zn2+ exhibited a slightly stimulatory effect on enzyme activity. The enzyme retained over 80% of its activity in the presence of Ca2+, Ba2+, and Mn2+. Thiol reagent and ethylenediaminetetraacetic acid did not inhibit the enzyme activity, whereas phenylmethylsulfonyl fluoride significantly inhibited the protease activity. The alkaline protease from B. gibsonii 6BS15-4 demonstrated efficiency in blood stain removal and could therefore be used as a detergent additive, with potential for various other industrial applications.

Effect of Added Commercial Bleaching Agent in Detergency of Enzyme Mixed Deterging Agent (시판 표백제가 효소배합 세제의 세척성에 미치는 영향)

  • 배정숙
    • Textile Coloration and Finishing
    • /
    • v.10 no.6
    • /
    • pp.55-66
    • /
    • 1998
  • In order to investigate the detergency effects of various detergents to stained polyester & cotton fabric with solid soils such as carbon black, liquid paraffin and fat, the optimum washing conditions according to the types of washing agent, the assesment of detergency effect by the measurement of reflectance after and before washing were studied. The detergency effect of various detergents to stained polyester and cotton fabric increased by using the mixtures of bleaching and enzyme detergent. In order to obtain the excellent detergency effect, 2-step treatment, the pre-washing with bleaching agent and bleaching-enzyme mixture detergent treatment is preferred. In comparison of the detergency to polyester and cotton fabric, it is assumed that the detergency to polyester stained fabric was superior than that to cotton stained fabric because of the difference of adhesive force between soil material and fabric in preparing solid stained fabric.

  • PDF

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

The Effects of Freezing and Supplementation of Molasses and Inoculants on Chemical and Nutritional Composition of Sunflower Silage

  • Konca, Y.;Buyukkilic Beyzi, S.;Ayasan, T.;Kaliber, M.;Bozkurt Kiraz, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.965-970
    • /
    • 2016
  • This study was conducted to determine the effects of freezing and supplementation of molasses (M), lactic acid bacteria (LAB) and LAB+enzyme mixture on chemical and nutritional composition of sunflower silage (SF). Sunflower crops were harvested (at about $29.2%{\pm}1.2%$ dry matter) and half of fresh sunflower was ensiled alone and half was frozen (F) at $-20^{\circ}C$ for 7 days. Silage additives were admixed into frozen SF material. All samples were ensiled in glass jars with six replicates for 90 days. The treatments were as follows: i) positive control (non-frozen and no additives, NF), ii) negative control (frozen, no additives, F), iii) F+5% molasses (FM), iv) F+LAB (1.5 g/tons, Lactobacillus plantarum and Enterococcus faecium, FLAB); v) F+LAB+enzyme (2 g/tons Lactobacillus plantarum and Enterococcus faecium and cellulase and amylase enzymes, FLEN). Freezing silage increased dry matter, crude ash, neutral detergent fiber, and acid detergent lignin. The organic matter, total digestible nutrient, non-fiber carbohydrate, metabolizable energy and in vitro dry matter digestibility were negatively influenced by freezing treatments (p<0.05). In conclusion, freezing sunflower plants prior to ensiling may negatively affect silage quality, while molasses supplementation improved some quality traits of frozen silage. Lactic acid bacteria and LAB+enzyme inoculations did not effectively compensate the negative impacts of freezing on sunflower silage.

Effect of Enzyme Treatment on Silage Quality : Meta-analysis

  • Cho, Sangbuem;Yeom, Sanghoon;Kim, Namhyung;Li, Dohyeong;Lee, Jaehoon;Lee, Sang Moo;Lee, Ji Hong;Shin, Su-Jin;Kim, Mi-So;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.248-256
    • /
    • 2016
  • The present study investigated the effect of enzyme inclusion on silage quality using meta-analysis tool. A total of 16 research papers reporting the effect of enzyme application on silage quality were employed in the meta-analysis of this study. Mixed model for integrating quantitative results from multiple studies was used first to calculate the predicted error of each study. Individual error from the estimated model was the applied into standard deviation of each study to calculate the mean difference. Finally, summary effect was determined using standard mean difference (SMD) and inversed variance weighting. Mixed model analysis and SMD analysis showed the same effect patterns in all analysis items. Enzyme inclusion in silage significantly (p < 0.05) altered all silage quality characteristics investigated compared to control when enzyme was not included. Our results showed that enzyme treatment increased dry matter content, preserved crude protein effectively, and elevated water soluble carbohydrate content. However, the pH value, acetic acid, propionic acid, neutral detergent fiber, and acid detergent fiber contents in silage with enzyme inclusion were lower than those of the control.