DOI QR코드

DOI QR Code

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won (Department of Molecular Biotechnology, Agricultural Plant Stress Research Center, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Jang, Sung-Kuk (Department of Molecular Biotechnology, Agricultural Plant Stress Research Center, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Huon, Thavrak (Department of Molecular Biotechnology, Agricultural Plant Stress Research Center, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Park, Sang-Wook (Department of Molecular Biotechnology, Agricultural Plant Stress Research Center, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Han, Ok-Soo (Department of Molecular Biotechnology, Agricultural Plant Stress Research Center, Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University)
  • Published : 2007.01.31

Abstract

The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

Keywords

References

  1. Agrawal, G. K., Jwa, N., Shibato, J., Han, O., Iwahashi, H. and Rakwal, R. (2003) Diverse environmental cues transiently regulate OsOPR1 of the octadecanoid pathway reveling its importance in rice defense/stress and development. Biochem. Biophy. Res. Commun. 310, 1081-1090.
  2. Agrawal, G. K., Tamogami, S., Han, O., Iwahashi, H. and Rakwal, R. (2004) Rice octadecanoid pathway. Biochem. Biophys. Res. Commun. 317, 1-15. https://doi.org/10.1016/j.bbrc.2004.03.020
  3. Brash, A. R. (1999) Lipoxygenases: occurrence, function, catalysis, and acquisition of substrate. J. Biol. Chem. 274, 23679-23682. https://doi.org/10.1074/jbc.274.34.23679
  4. Bryant, R. W., Bailey, J. M., Schewe, T. and Rapport, S. M. (1982) Positional specificity of a reticulocyte lipoxygenase specificity. Conversion of arachidonic acid to 15S-hydroperoxyeicosatetraenoic acid. J. Biol. Chem. 257, 6050-6055.
  5. Butovich, I. A., Lukyanova, S. M. and Reddy, C. C. (1998) Oxidation of linoleyl alcohol by potato tuber lipoxygenase: Possible mechanism and the role of carboxylic group in substrate binding. Biochem. Biophy. Res. Commun. 249, 344-349. https://doi.org/10.1006/bbrc.1998.9148
  6. Butovich, I. A., Lukyanova, S. M. and Reddy, C. C. (2000) Oxidation of linoleyl alcohol by potato tuber lipoxygenase: Kinetics and positional, stereo, and geometrical (cis, trans) specificity of the reaction. Arch. Biochem.Biophys. 378, 65-77. https://doi.org/10.1006/abbi.2000.1816
  7. Butovich, I. A. and Reddy, C. C. (2001) Enzyme-catalyzed and enzyme-triggered pathway in dioxygenation of 1-monolinoleoylrac- glycerol by potato tuber lipoxygenase. Biochim. Biophys. Acta 1546, 379-398. https://doi.org/10.1016/S0167-4838(01)00162-5
  8. Coffa, G., Schneider, C. and Brash, A. R. (2005) A comprehensive model of positional and stereo control in lipoxygenase. Biochem. Biophys. Res. Commun. 338, 87-92. https://doi.org/10.1016/j.bbrc.2005.07.185
  9. Egmond, M. R., Vliegenthart, J. F. G. and Boldingh, J. (1972) Stereospecificity of the hydrogen abstraction at carbon atom n- 8 in the oxygenation of linoleic acid by lipoxygenases from corn germs and soya beans. Biochem. Biophys. Res. Commun. 48, 1055-1060. https://doi.org/10.1016/0006-291X(72)90815-7
  10. Feussner, I. and Wasternack, C. (2002) The lipoxygenase pathway. Annu. Rev. Plant Biol. 53, 275-297. https://doi.org/10.1146/annurev.arplant.53.100301.135248
  11. Gobel, C., Feussner, I. and Rosahl, S. (2003) Lipid peroxidation during the hypersensitive response in potato in the absence of 9-lipoxygenase. J. Biol. Chem. 278, 52834-52840 https://doi.org/10.1074/jbc.M310833200
  12. Hughes R. K., Wu Z., Robinson D. S., Hardy D., West S. I., Fairhurst S. A. and Casey R. (1998) Characterization of authentic recombinant pea-seed lipoxygenases with distinct properties and reaction mechanism. Biochem. J. 333. 33-43. https://doi.org/10.1042/bj3330033
  13. Hughes, R. K., West, S. I., Hornostaj, A. R., Lawson, D. M., Fairhurst, S. A., Sanchez, R. O., Hough, P., Robinson, B. H. and Casey, R. (2001) Probing a novel potato lipoxygenase with dual positional specificity reveals primary determinants of substrate binding and requirements for a surface hydrophobic loop and has implications for the role of lipoxygenases in tubers. Biochem. J. 353, 345-355. https://doi.org/10.1042/0264-6021:3530345
  14. Jalloul, A., Montillet, J. L., Assigbetse, K., Agnel, J. P., Delannoy, E., Triantaphylides C., Daniel, J. F., Marmey, P., Geiger, J. P. and Nicole, M. (2002) Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenases during hypersensitive reaction. Plant J. 32, 1-12. https://doi.org/10.1046/j.1365-313X.2002.01393.x
  15. Kim, E., Back, K., Baik, M., Choi, E. and Han, O. (2001) Sequence of wound-responsive lipoxygenase gene from maize seedlings. J. Biochem. Mol. Biol. 34, 259-261.
  16. Kim, E., Choi, E., Kim, Y., Cho, K., Lee, A., Shim, J., Rakwal, R., Agrawal, G. K. and Han, O. (2003) Dual positional specificity and expression of nontraditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings. Plant Mol. Biol. 52, 1203-1213. https://doi.org/10.1023/B:PLAN.0000004331.94803.b0
  17. Kim, E., Kim, H., Park, R., Lee, Y. and Han, O. (2002) Dual positional specificity of wound-responsive lipoxygenase from maize seedlings. J. Plant Physiol. 159, 1263-1265. https://doi.org/10.1078/0176-1617-00898
  18. Lee, A., Cho, K., Jang, S., Rakwal, R., Iwahashi, H., Agrawal, G. K., Shim, J. and Han, O. (2004) Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem. Biophys. Res. Commun. 318, 734-738. https://doi.org/10.1016/j.bbrc.2004.04.095
  19. Lee, S. H., Ahn, S. J., Im, Y. J., Cho, K., Chung, G. C., Cho, B. H. and Han, O. (2005) Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleafgourd and cucumber roots. Biochem. Biophys. Res. Commun. 330, 1194-1198. https://doi.org/10.1016/j.bbrc.2005.03.098
  20. Montillet, J. L., Chamnongpol, S., Rusterucci, C., Dat, J., Cotte, B., Agnel, J. P., Battesti, C., Inze, D., Breusegem, F. V. and Triantaphylides, C. (2005) Fatty acid hydroperoxides and $H_2O_2$ in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol. 138, 1516-1526. https://doi.org/10.1104/pp.105.059907
  21. Park, J. (2004) MS Theses, The effects of micelle formation in the reaction mechanism of lipoxygenase (AF 271849), Chonnam National University.
  22. Perez-Gilabert, M., Sanchez-Felipe, I., Morte, A. and Garcia- Carmona, F. (2005) Kinetic properties of lipoxygenase from desert truffle (Terfezia claveryi chatin) ascocarps: Effect of inhibitors and activators. J. Agrc. Food Chem. 53, 6140-6145. https://doi.org/10.1021/jf050521b
  23. Reymond, P. and Framer, E. E. (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1, 404-411. https://doi.org/10.1016/S1369-5266(98)80264-1
  24. Schilstra, M. J., Veldink, G. A. and Vliegenthart, J. F. G. (1993) Kinetic analysis of the induction period in lipoxygenase catalysis. Biochemistry 32. 7686-7691. https://doi.org/10.1021/bi00081a012
  25. Schilstra, M. J., Veldink, G. A. and Vliegenthart, J. F. G. (1994) The dioxygenation rate in lipoxygenase catalysis is determined by the amount of iron (III) lipoxygenase in solution. Biochemistry 33. 3974-3979. https://doi.org/10.1021/bi00179a025
  26. Siedow, J. N. (1991) Plant lipoxygenases : Structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 145-188. https://doi.org/10.1146/annurev.pp.42.060191.001045
  27. Slappendel, S., Malmström, B. G., Peterson, L., Eherenberg, A., Veldink, G. A. and Vliegenthart, J. F. G. (1982) On the spin and valence state of iron in native soybean lipoxygenase-1. Biochem. Biophys. Res. Commun. 108. 673-677. https://doi.org/10.1016/0006-291X(82)90882-8
  28. Smith, W. L.and Lands, W. E. M. (1972) Oxygenation of unsaturated fatty acids by soybean lipoxygenase. J. Biol. Chem. 247. 1038-1047.
  29. Surrey, K. (1964) Spectrophotometric method for determination of lipoxidase activity. Plant Physiol. 39. 65-70. https://doi.org/10.1104/pp.39.1.65

Cited by

  1. Comparison of lipoxygenase activity characteristics in aqueous extracts from milk-stage sweet corn and waxy corn vol.24, pp.3, 2015, https://doi.org/10.1007/s10068-015-0112-1
  2. Calcium modulates membrane association, positional specificity, and product distribution in dual positional specific maize lipoxygenase-1 vol.60, 2015, https://doi.org/10.1016/j.bioorg.2015.04.001
  3. Different mechanisms control lipoxygenase activity in durum wheat kernels vol.52, pp.2, 2010, https://doi.org/10.1016/j.jcs.2010.04.003
  4. Cellular localization of dual positional specific maize lipoxygenase-1 in transgenic rice and calcium-mediated membrane association vol.181, pp.3, 2011, https://doi.org/10.1016/j.plantsci.2011.05.016
  5. Transgenic expression of dual positional maize lipoxygenase-1 leads to the regulation of defense-related signaling molecules and activation of the antioxidative enzyme system in rice vol.185-186, 2012, https://doi.org/10.1016/j.plantsci.2011.10.016