• Title/Summary/Keyword: Environmental flow

Search Result 5,184, Processing Time 0.036 seconds

Review of Earthquake Studies Associated with Groundwater by Korean Researchers (국내 연구진의 지하수를 이용한 지진 연구 동향 분석)

  • Yun, Sul-Min;Hamm, Se-Yeong;Cheong, Jae-Yeol;Lee, Hyun A
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.165-175
    • /
    • 2022
  • Earthquakes have occurred owing to movements on a fault since several billion years ago. Research on the relationship between earthquakes and groundwater began in the 1960s in the United States, but related works, including hydrogeochemistry research, only began in the 2010s in South Korea. In this study, domestic studies on the relationship between earthquakes and groundwater until 2021 were collected from the Web of Science and characterized by subject area (groundwater level, hydrogeochemistry, combination of the two, and others). The results showed that the number of published articles per year was positively correlated with the 2011 Tohoku earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake, with the maximum numbers observed in 2011, 2018, 2019, and 2020. Most studies on the relationship between earthquakes and groundwater level addressed groundwater level fluctuations in the duration of the subject earthquake, with little consideration of the precursors. Groundwater level monitoring data, as well as hydrogeochemical information and microbial communities, may contribute to a more detailed understanding of groundwater flow and chemical reactions in bedrock caused by earthquakes. Therefore, the establishment of a national groundwater monitoring network for seismic monitoring and prediction is required.

Ventilation Corridor Characteristics Analysis and Management Strategy to Improve Urban Thermal Environment - A Case Study of the Busan, South Korea - (도시 열환경 개선을 위한 바람길 특성 분석 및 관리 전략 - 부산광역시를 사례로 -)

  • Moon, Ho-Yeong;Kim, Dong-Pil;Gweon, Young-Dal;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.659-668
    • /
    • 2021
  • The purpose of this study is to propose a ventilation corridor management plan to improve the thermal environment for Busan Metropolitan City. To this end, the characteristics of hot and cool spots in Busan were identified by conducting spatial statistical analysis, and thermal image data from Landsat-7 satellites and major ventilation corridors were analyzed through WRF meteorological simulation. The results showed the areas requiring thermal environment improvement among hot spot areas were Busanjin-gu, Dongnae-gu, industrial areas in Yeonje-gu and Sasang-gu, and Busan Port piers in large-scale facilities. The main ventilation corridor was identified as Geumjeongsan Mountain-Baekyangsan Mountain-Gudeoksan Mountain Valley. Based on the results, the ventilation corridor management strategy is suggested as follows. Industrial facilities and the Busan Port area are factors that increase the air temperature and worsen the thermal environment of the surrounding area. Therefore, urban and architectural plans are required to reduce the facility's temperature and consider the ventilation corridor. Areas requiring ventilation corridor management were Mandeok-dong and Sajik-dong, and they should be managed to prevent further damage to the forests. Since large-scale, high-rise apartment complexes in areas adjacent to forests interfere with the flow of cold and fresh air generated by forests, the construction of high-rise apartment complexes near Geumjeongsan Mountain with the new redevelopment of Type 3 general residential area should be avoided. It is expected that the results of this study can be used as basic data for urban planning and environmental planning in response to climate change in Busan Metropolitan City.

Experimental Study on Evaluating Early-age Strength and Stiffness Characteristics of Controlled Low Strength Material (유동성 채움재의 조기 강도 및 강성 특성 평가를 위한 실험적 연구)

  • Son, Dong Geon;Jeong, In Up;Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.133-140
    • /
    • 2021
  • There are few attempts to estimate the strength and stiffness of controlled low strength material (CLSM) using existing field-testing methods. The objective of this study is to evaluate the resilient modulus of CLSM by using the Light Weight Deflectometer (LWD) and investigate the relationships between the resilient modulus from LWD and the unconfined compressive strength (UCS) and secant modulus of elasticity from unconfined compressive test. Five CLSMs with different mix designs are used to evaluate the flowability and the stiffening of the CLSM in the flow and Vicat needle tests, respectively. To evaluate the early strength and stiffness characteristics, unconfined compressive tests are performed using the CLSM specimens cured for 1 and 7 days. LWD tests are carried out to estimate the resilient modulus of the CLSM specimens. The experimental results show that for the curing time of 1 day, the UCS and secant modulus of elasticity generally increase with the fast setting mortar content (FC). The CLSM specimen with the highest FC shows the significant increase in the UCS and secant modulus of elasticity along the curing time. Overall, the resilient modulus for the curing time of 1 day increases with the FC, while that for the curing time of 7days decreases with an increase in the FC. From the results, the linear relationships between the resilient modulus and UCS and secant modulus of elasticity are established.

A Study of the Regeneration of Spent GAC using an Electrochemical Method (전기화학적 방법을 이용한 Spent Granular Activated Carbon (GAC)의 재생 연구)

  • Lee, Sangmin;Joo, Soobin;Jo, Youngsoo;Oh, Yeji;Kim, Hyungjun;Shim, Intae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.481-491
    • /
    • 2022
  • This study investigates the characteristics of the GAC adsorption behavior during the operation of a multi-stage cross-flow filtration and GAC adsorption process for the purpose of devising an advanced treatment of combined sewer overflows (CSOs) and evaluates the regeneration efficiency of spent GAC that has reached the design breakpoint. During the filtration process, suspended substances are easily removed, but dissolved organic substances are not removed, necessitating a process capable of removing dissolved organic substances for the advanced treatment of CSOs. In general, GAC adsorption has been applied under low-concentration organic conditions, such as for water purification and tertiary treatments of sewage, and has rarely been applied under conditions with high organic concentrations, such as with sewage or CSOs. Accordingly, this study will provide a new and interesting experience. Also in this study, the continuous operation and breakthrough characteristics of GAC according to the strength of the inflow organic matter were investigated, electrochemical regeneration was applied to the used GAC, and the regeneration efficiency was evaluated through desorption and re-adsorption tests. The results showed that the breakthrough period was 21 days under high concentration conditions, 28 days at medium concentrations, and 32 days under low concentration conditions. The desorption of adsorbed organic matter through electrolysis occurred in the range of 188 to 609 mgCOD/L depending on the electrolysis conditions, and the effect of the electrolyte type led to the finding that NaOH was slightly higher than H2O2.

Model-based Efficiency Analysis for Photovoltaic Generation O&M: A Case Study (태양광발전 운전 및 유지보수를 위한 모델기반 효율분석: 사례연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.405-412
    • /
    • 2022
  • This paper studies the method of estimating power loss and classifying the factors for improving the power generation efficiency through O&M. It is installed under various climatic conditions worldwide, operational and maintenance technologies suitable for the characteristics of the installation location are required. Existing studies related to solar power generation efficiency have been actively quantifying the impact on short-term losses by environmental factors such as high temperature, dust accumulation, precipitation, humidity, and wind speed, but analysis of the overall impact from a long-term operation perspective is limited. In this study, the potential for efficiency improvement was analyzed by re-establishing a loss classification system according to the power flow of solar power to derive a comprehensive efficiency model for long-term operation and estimating power loss through a case study for each region where climate conditions are classified. As a result of the analysis, the average annual potential for improving soiling loss was 26.9%, Death Valley 7.2%, and Seoul 3.8%. Aging losses was 6.6% in the 20th year as a cumulative. The average annual potential due to temperature loss was 2.9 % for Doha, 1.9% for Death Valley, and 0.2% for Seoul.

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds (커피찌꺼기를 활용한 콘크리트 혼화재의 개발)

  • Kim, Sung-Bae;Lee, Jae-Won;Choi, Yoon-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.

Bacterial Distribution and Relationship with Phytoplankton in the Youngsan River Estuary (영산강 하구의 박테리아 분포 및 식물플랑크톤과의 관계)

  • Kim, Se Hee;Sin, Yong Sik
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.53-62
    • /
    • 2019
  • Heterotrophic bacteria are a major member of the microbial loop in the marine ecosystem and play an important role in the biogeochemical cycle decomposing organic matter. Therefore study of bacterial variation is important to understand the material cycle and energy flow of marine ecosystems. We investigated the monthly variations of bacteria and environmental factors in the Youngsan River estuary, and the correlation between bacteria and phytoplankton biomass (chlorophyll-a) including size-structure. As a result, bacteria of the Youngsan River estuary were higher in the surface than in the bottom layer, and higher in the summer than in winter. And the closer to the dike, the abundance increased, and it increased to the peaks in August, September, and June 2019 at the station closest to the dike. The chlorophyll-a also increases at the stations and time when the bacterial abundance was high and they correlates positively displaying no difference between size fractions. The results indicate that organic matter derived from phytoplankton has an effect on bacterial variation but no size-dependent effects. In addition, the seasonal pattern of bacteria increasing in proportion to the water temperature suggests the effect of water temperature on the growth of bacteria. No association of bacterial abundance variation with nutrient supply due to freshwater input was observed. In this study, dissolved oxygen was depleted and hypoxia was observed for a short time when a strong stratification was not developed. This may be resulted from the supply of organic matter from phytoplankton and the consumption of oxygen due to bacterial decomposition.

A Study on the Hydraulic Stability of a Multi-Layered Porous Riverbank Revetment Using Castor Oil-Based Biopolymer (피마자유기반 바이오폴리머를 활용한 다층다공성 호안의 수리적 안정성 검토)

  • Sang-Hoon, Lee;Joongu, Kang;Hong-Kyu, Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.228-236
    • /
    • 2022
  • Riverbank revetments are installed to increase the stability, while preventing scouring, and utilize the rivers; their construction is prioritized to secure dimensional safety that can withstand flooding. Existing revetment technologies employ use of rocks, gabions, and concrete. However, stone and gabions are easily erosion and destroyed by extensive flooding. Though the materials used in concrete technology possess strength and stability, the strong base adversely affects the aquatic ecosystem as components leach and remain in water for a long time. This serves as an environmental and ecological issue as vegetation does not grow on the concrete surface. This study introduces multi-layer porous riverbank revetment technology using biopolymer materials extracted from castor oil. Results obtained from this study suggest that this technology provides greater dimensional stability as compared to existing technologies. Moreover. it does not release toxic substances into the rivers. Multiple experiments conducted to review the application of this technology to diverse river environments confirm that stability is achieved at a flow velocity of 8.0 m/s and maximum tractive force of 67.25 kgf/m2 (659.05 N/m2).

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Development of a Centrifugal Microreactor for the Generation of Multicompartment Alginate Hydrogel (다중 알긴산 입자제조를 위한 원심력 기반 미세유체 반응기 개발)

  • Ju-Eon, Jung;Kang, Song;Sung-Min, Kang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • Microfluidic reactors have been made to achieve significant development for the generation of new functional materials to apply in a variety of fields. Over the last decade, microfluidic reactors have attracted attention as a user-friendly approach that is enabled to control physicochemical parameters such as size, shape, composition, and surface property. Here, we develop a centrifugal microfluidic reactor that can control the flow of fluid based on centrifugal force and generate multifunctional particles of various sizes and compositions. A centrifugal microfluidic reactor is fabricated by combining microneedles, micro- centrifuge tubes, and conical tubes, which are easily obtained in the laboratory. Depending on the experimental control param- eters, including centrifuge rotation speed, alginate concentration, calcium ion concentration, and distance from the needle to the calcium aqueous solution, this strategy not only enables the generation of size-controlled microparticles in a simple and reproducible manner but also achieves scalable production without the use of complicated skills or advanced equipment. Therefore, we believe that this simple strategy could serve as an on-demand platform for a wide range of industrial and academic applications, particularly for the development of advanced smart materials with new functionalities in biomedical engineering.