• 제목/요약/키워드: Environmental compatibility

검색결과 231건 처리시간 0.03초

DSM을 활용한 BIM 기반 설계업무프로세스 정립 및 개선을 위한 연구 -기본설계단계를 중심으로- (A Study on Improvement Plan of BIM-based Design Process using DSM -Focus on the Criteria Design Phase-)

  • 정영호;이주성;함남혁;김주형;김재준
    • 한국CDE학회논문집
    • /
    • 제19권4호
    • /
    • pp.368-389
    • /
    • 2014
  • There are many agendas and discussion subjects for BIM-based Criteria Design phase. At that time, some problems are occurred by software compatibility, simple repetitive tasks, rework caused by missing information etc. In this study, we focus on solving that problems by applying API(Application Programming Interface) method. For effective study, we construct Criteria Design process by using DSM (Dependency Structure Matrix) and study applicability of API. It will be effective for time-consuming task and simply labor-intensive tasks by applying API. we expect improving BIM-based Design Process and Data quality, work productivity without missing information and shapes for using API.

중국 소비자의 중용 가치관이 친환경 소비행동에 미치는 영향 (Impacts of Zhongyong Values on Green Consumption Behavior of Chinese Consumers)

  • 리이;이유경
    • 무역학회지
    • /
    • 제46권6호
    • /
    • pp.109-125
    • /
    • 2021
  • China has achieved remarkable economic growth through an extended period of rapid industrialization. However, adverse environmental issues have become more prevalent during this time of development. In particular, car exhaust emissions in the country have become one of the most substantial causes of environmental degradation in China. To combat these issues, the Chinese government is actively implementing green car policies to mitigate the negative environmental concerns. Likewise, Chinese consumers' interest in green cars has also increasing. Despite these changes in consumer perceptions, research on Chinese consumers' green consumption behavior is still in its infancy. Therefore, an empirical study was conducted to measure the relationship between zhongyong(中庸) values, new ecological paradigm(NEP), and green consumption behavior for 334 Chinese consumers. As a result, the study found that the three sub-dimensions of zhongyong(中庸) values(multi-dimensionality, flexibility and compatibility) and NEP had a significantly positive(+) effect on the purchase intention of green cars. It was also found that NEP positively mediates the effect of flexibility and harmony on purchase intention of green cars. This study is expected to provide academic outcomes on China, which is currently the world's fastest growing green car market, as well as providing practical strategic implications for establishing unique green marketing strategy for China.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Measures of Work-life Balance and Interventions of Reasonable Accommodations for the Return to Work of Cancer Survivors: A Scoping Review

  • Giuliana Buresti;Bruna Maria Rondinone;Antonio Valenti;Fabio Boccuni;Grazia Fortuna;Sergio Iavicoli;Maria Cristina Dentici;Benedetta Persechino
    • Safety and Health at Work
    • /
    • 제15권3호
    • /
    • pp.255-262
    • /
    • 2024
  • Background: Nearly half of patients diagnosed with cancer are in the middle of their traditional working age. The return to work after cancer entails challenges because of the cancer or treatments and associated with the workplace. The study aimed at providing more insight into the occupational outcomes encountered by workers with cancer and to provide interventions, programs, and practices to support their return to work. Methods: A scoping review was conducted using the Arksey and O'Malley framework and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for scoping review guidelines. Relevant studies were systematically searched in PubMed/MEDLINE, SCOPUS and Grey literature from 01 January 2000 to 22 February 2024. Results: The literature search generated 3,017 articles; 53 studies were considered eligible for this review. Most of the studies were longitudinal and conducted in Europe. Three macroarea were identified: studies on the impact of cancer on workers in terms of sick leave, employment, return to work, etc.; studies reporting wider issues that may affect workers, such as the compatibility of treatment and work and employment; studies reporting interventions or policies aiming to promote the return to work. Conclusion: There is a lack in the literature in defining multidisciplinary interventions combining physical, psycho-behavioural, educational, and vocational components that could increase the return-to-work rates. Future studies should focus on interdisciplinary return to work efforts with multiple stakeholders with the involvement of an interdisciplinary teamwork (healthcare workers and employers) to combine these multidisciplinary interventions at the beginning of sick leave period.

가축분뇨실태조사를 위한 양분수지 산정 모델 개발 (Development of a Nutrient Budget Model for Livestock Excreta Survey)

  • 김덕우;유홍덕;임도영;정유진;김용석
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.769-779
    • /
    • 2017
  • Nutrient (i.e., nitrogen and phosphorus) budgets are required under a 'Livestock Excreta Survey'. A nutrient budget is one of the agri-environmental indicators that calculates the difference between the inputs and outputs of the amount of nutrients within a certain boundary and for a certain time period (e.g., 1 year). In this study, a nutrients budget model was developed to effectively determine the surplus of nutrients within a region in Korea. The C# program language was used in order to facilitate the deployment of a graphical user interface (GUI) and to enhance compatibility. Also, the model was developed on Windows OS, which is the commonly used operating system in Korea. The model was based on the OECD/Eurostat nutrient budget method, and it was modified to consider manure composting procedures as well. There are key features of the nutrient budget model, including directly use of the original data sets from various input and output sources, and a collectively exchange of the address in different formats. The model can quickly show the results of various spatial and temporal resolutions with the same data, as well as perform a sensitivity analysis with coefficients and easily compareresults using tables and graphs. Further, it would be necessary to study the extension of the scope of utilization, such as the application of various nutrient budget methods. It would also be helpful to investigate both pre and postprocessing information such as linking input data through online systems.

Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses

  • Seonhyeok Kim;Taegeon Kil;Sangmin Shin;Daeik Jang;H.N. Yoon;Jin-Ho Bae;Joonho Seo;Beomjoo Yang
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.487-498
    • /
    • 2023
  • The present study investigated the flexural behavior of reinforced concrete (RC) beams strengthened with an ultrahigh performance concrete (UHPC) panel having various thicknesses. Two fabrication methods were introduced in this study; one was the direct casting of UHPC onto the bottom surface of the RC beams (I-series), and the other was the attachment of a prefabricated UHPC panel using an adhesive (E-series). UHPC panels having thicknesses of 10, 30, 50, and 70 mm were applied to RC beams, and these specimens were subjected to four-point loading to assess the effect of the UHPC thickness on the flexural strengthening of RC beams. The test results indicated that the peak strength and initial stiffness were vastly enhanced with an increase in the thickness of the UHPC panel, showing an improved energy dissipation capacity. In particular, the peak strength of the E-series specimens was higher than that of I-series specimens, showing high compatibility between the RC beam and the UHPC panel. The experimental test results were comparatively explored with a discussion of numerical analysis. Numerical analysis results showed that the predictions are in fair agreement with experimental results.

Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience

  • Shunzheng Jia;Xiuhong Niu;Fangting Jia;Tayebeh Mahmoudi
    • Advances in concrete construction
    • /
    • 제16권1호
    • /
    • pp.69-78
    • /
    • 2023
  • This investigation delves into the adverse repercussions stemming from the impact of arsenic on steel pipes concealed within soil designated for rice cultivation. Simultaneously, the study aims to ascertain effective techniques for detecting arsenic in the soil and to provide strategies for mitigating the corrosion of steel pipes. The realm of nanotechnology presents promising avenues for addressing the intricate intersection of renewable energy, oil, and environmental pollution from a novel perspective. Nanostructured materials, characterized by distinct chemical and physical attributes, unveil novel pathways for pioneering materials that exert a substantial impact across diverse realms of food production, storage, packaging, and quality control. Within the scope of the food industry, the scope of nanotechnology encompasses processes, storage methodologies, packaging paradigms, and safeguards to ensure the safety of consumables. Of particular note, silver nanoparticles, in addition to their commendable antibacterial efficacy, boast anti-fungal and anti-inflammatory prowess, environmental compatibility, minimal irritability and allergenicity, resilience to microbial antagonism, thermal stability, and robustness. Confronting the pressing issue of arsenic contamination within both environmental settings and the food supply is of paramount importance to preserve public health and ecological equilibrium. In response, this study introduces detection kits predicated upon silver nanoparticles, providing an expeditious and economically feasible avenue for identifying arsenic concentrations ranging from 0.5 to 3 ppm within rice. Subsequent quantification employs Hydride Atomic Absorption Spectroscopy (HG-AAS), which features a detection threshold of 0.05 ㎍/l. A salient advantage inherent in the HG-AAS methodology lies in its capacity to segregate analytes from the sample matrix, thereby significantly reducing instances of spectral interference. Importantly, the presence of arsenic in the soil beneath rice cultivation establishes a causative link to steel pipe corrosion, with potential consequences extending to food contamination-an intricate facet embedded within the broader tapestry of renewable energy, oil, and environmental pollution.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

철근콘크리트와 프리스트레스트 콘크리트 보의 시간의존적 거동해석 (Time Dependent Analysis of Reinforced and Prestressed Concrete Beams)

  • 곽호경
    • 대한토목학회논문집
    • /
    • 제14권1호
    • /
    • pp.1-12
    • /
    • 1994
  • 본 논문은 철근콘크리트와 프리스트레스트 콘크리트 보의 시간의존적 거동해석에 관한 내용으로 재령-보정 유효 탄생계수법에 토대를 두고 단면 내 힘의 평형관계와 변형의 Compatibility 조건을 사용한 반복해석을 통해 부재의 거동을 파악하였다. 콘크리트의 전 단면이 유효하고 부재가 선형 탄생체로 거동하며 강재의 효과는 단지 환산단면적 개념에 따라 해석시 강성만으로 보정되는 기존의 해석방법과는 달리 모든 재료가 고유의 성질을 유지할 수 있도록 함께 고려하며 균열의 영향도 동시에 고려함으로써 모든 하중조건에서 보다 정확한 결과를 얻을 수 있도록 하였다. 특히 예제해석을 통해 시간에 따른 각 재료의 응력 재분배, 장기처짐의 발생 등 시간의존적 거동에 영향을 미치는 여러 인자의 비교 검토와 균열의 영향분석을 하였으며 설계시 보다 정확하고 합리적으로 이들의 효과를 고려할 수 있도록 하였다.

  • PDF

Evidence for Genetic Similarity of Vegetative Compatibility Groupings in Sclerotinia homoeocarpa

  • Chang, Seog Won;Jo, Young-Ki;Chang, Taehyun;Jung, Geunhwa
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.384-396
    • /
    • 2014
  • Vegetative compatibility groups (VCGs) are determined for many fungi to test for the ability of fungal isolates to undergo heterokaryon formation. In several fungal plant pathogens, isolates belonging to a VCG have been shown to share significantly higher genetic similarity than those of different VCGs. In this study we sought to examine the relationship between VCG and genetic similarity of an important cool season turfgrass pathogen, Sclerotinia homoeocarpa. Twenty-two S. homoeocarpa isolates from the Midwest and Eastern US, which were previously characterized in several studies, were all evaluated for VCG using an improved nit mutant assay. These isolates were also genotyped using 19 microsatellites developed from partial genome sequence of S. homoeocarpa. Additionally, partial sequences of mitochondrial genes cytochrome oxidase II and mitochondrial small subunit (mtSSU) rRNA, and the atp6-rns intergenic spacer, were generated for isolates from each nit mutant VCG to determine if mitochondrial haplotypes differed among VCGs. Of the 22 isolates screened, 15 were amenable to the nit mutant VCG assay and were grouped into six VCGs. The 19 microsatellites gave 57 alleles for this set. Unweighted pair group methods with arithmetic mean (UPGMA) tree of binary microsatellite data were used to produce a dendrogram of the isolate genotypes based on microsatellite alleles, which showed high genetic similarity of nit mutant VCGs. Analysis of molecular variance of microsatellite data demonstrates that the current nit mutant VCGs explain the microsatellite genotypic variation among isolates better than the previous nit mutant VCGs or the conventionally determined VCGs. Mitochondrial sequences were identical among all isolates, suggesting that this marker type may not be informative for US populations of S. homoeocarpa.