• Title/Summary/Keyword: Environmental Turbulence

Search Result 272, Processing Time 0.024 seconds

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Numerical Simulation on Dispersion of NOx in Vehicular Exhaust Gas around Buildings (빌딩주변 자동차 배기가스중의 NOx 분산에 관한 수치해석)

  • Jeon, Yeong Nam;Jeong, O Jin;Song, Hyeong Un
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.655-660
    • /
    • 2004
  • This paper demonstrates the numerical simulation of three dimensional flow pattern for vehicular exhaust dispersion in the street canyons. The wind flow around buildings in urban is computed by the SIMPLEST method. The convection-diffusion equation was used to compute the $NO_X$ concentration level near buildings. Details are given of important boundary conditions and turbulence quantities variations. The simple turbulence model was used for unisotropic viscous effect. A control-volume based finite-difference method with the upwind scheme is employed for discretization equation. The simple turbulence model applied in this study has been verified through comparison between predicted and measured data near buildings. By the predictive results, the updraft induced by the presence of high-rise buildings is important in the transport of street level pollutant out from the street canyons. Our suggestion for reducing ground level pollution is to have high-rise buildings constructed or to reduce the channelling effect of street canyons.

Wake-Induced Boundary Layer Transition on an Airfoil at Moderate Free-Stream Turbulence (자유유동 난류강도에 따른 익형 위 후류유도 경계층 천이의 거동)

  • Park, Tae-Choon;Kang, Shin-Hyoung;Jeon, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.921-928
    • /
    • 2006
  • Wake-induced boundary-layer transition on a NACA0012 airfoil with zero angle of attack is experimentally investigated in periodically passing wakes under the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensities $(Tu_{\infty})$ at the leading edge of the airfoil are 0.5 and 3.5%, respectively. The Reynolds number (Rec) based on chord length (C) of the airfoil is $2.0{\times}10^5$, and Strouhal number (Stc) of the passing wake is about 1.4. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The patch under the high free-stream turbulence $(Tu_{\infty}=3.5%)$ grows more greatly in laminar-like regions compared with that under the low turbulence $(Tu_{\infty}=0.5%)$ in laminar regions. The former, however, does not greatly change the turbulence level in very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually loses its identification, whereas the latter keeps growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and with the receding wakes.

Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

  • Fu, Tuan-Chun;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Baheru, Thomas
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.15-33
    • /
    • 2014
  • This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.

An Exploratory Study on the Interaction between Learning Orientation and Environmental Turbulence - The Case of Railway Public Organizations - (학습지향성과 환경격변성의 상호작용에 관한 탐색적 연구 - 철도공기업을 중심으로 -)

  • Shin, Tack-Hyun;Kim, Seong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.317-326
    • /
    • 2010
  • The purpose of this study is to depict statistically and exploratively the interrelationship among learning orientation, environmental turbulence, and performance in the railway public organizations. To attain this purpose, a questionnaire was provided based on literature survey, and 616 respondent's data received was tested for its validity and reliability. And then, simple and vertical regression analysis were performed. The main findings are as follows: First, learning orientation has a relatively positive effects on performance. Second, environmental turbulence shows a partial moderating effects on the relationship between learning orientation and performance. These findings suggest that learning orientation do exist as an important organizational cultural dimension that contributes to the acquisition of sustainable competitive advantage, and some restrictive factors of public organizations seem to inevitably disrupt the intrinsic necessity of learning in the railway organizations.

A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula (한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구)

  • Sung-Il Yang;Ju Heon Lee;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.153-176
    • /
    • 2024
  • At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.

Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences (능동 난류 생성을 통한 장대 교량의 공력 특성 비교)

  • Lee, Seungho;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.341-349
    • /
    • 2011
  • The main purpose of this study is to investigate the affect of various turbulence properties on aerodynamic characteristics of twin box bridge section. To achieve this goal, active turbulence generator which successfully simulated various target turbulences was developed in the wind tunnel. From the wind tunnel tests, turbulence integral length scale did not affect on the aerodynamic forces and flutter derivatives except for the $A_1^*$ curve. Turbulence intensity gave slight effect on the unsteady aerodynamic force, but turbulence integral length scale did not affect the self-excited forces except vertical direction component.

The Relationship between Dynamic Capabilities, Marketing Capabilities, and Environmental Turbulence: An Empirical Study from China

  • ZHANG, Chun Xia;BANG, Ho Yeol
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.12
    • /
    • pp.529-540
    • /
    • 2021
  • This study proposes a model and attempts to illustrate the relationship between the frequency of dynamic capability utilization and marketing capabilities, and how market, technology, and competitor turbulence may affect these relationships. The findings suggest that in a highly turbulent environment, frequent use of sensing and integration capabilities may cause certain changes in the impact of marketing capabilities, and in a highly competitive environment, marketing capabilities are positively correlated with company performance. The sample consists of 212 enterprises of China with a three-year vertical data span. The partial least square program Smart-PLS was used for data analysis. The careful management of dynamic capabilities (i.e., relational, sensory, and inclusive) is required to address environmental conditions to achieve capacity alignment and ultimately enhance performance. Our findings demonstrate that relationship capabilities are valuable to the organization and might even help improve its sensing and integrating capabilities. In a highly competitive environment, marketing capabilities contribute the most to company performance. The more frequent the environmental turbulence, the higher the impact of integration capabilities on marketing capabilities. This situation necessitates the organization's usage of dynamic capabilities to modify its marketing approach effectively between stable and turbulent environments.

The effects of turbulence models on the numerical analysis of CSTR (난류모델이 완전혼합반응조 수치해석에 미치는 영향 연구)

  • Im, Yeong-Taek;Park, No-Seok;Kim, Seong-Su;Lee, Beom-Hui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.375-382
    • /
    • 2011
  • The usages of CFD (Computational Fluid Dynamics) which is simulating turbulent flows in CSTRs (Complete Stirrer Tank Reactors) have been reported. Considering model strategies and simulation techniques, this paper is focused on the turbulence models. The results of this study would suggest multiple reference frameworks relevant to rotational flow simulation. Specifically, the analysis of turbulence dissipation rates referred to this study would solve the relevant environmental engineering problem and would be beneficial to the CFD in CSTRs using mechanical mixer.

A Study on PBD Improvement Effect depending on disturbance by Laboratory Model Tests failure. (실내 모형시험을 통한 교란에 따른 PBD개량효과 연구)

  • Lim, Jin-Gyu;Kim, Woo-Jin;Hwang, Sung-Won;Kang, Kwon-Soo;Kim, Jong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1132-1135
    • /
    • 2008
  • In this study, a circular and indoor soil tank foundation was manufactured to study the improvement according to the degree of turbulence arising from PBD penetration, using the existing plate-type shoe and improved V-type shoe to change the degree of turbulence. Furthermore, to study the foundation improvement effect, the strength, settlement speed in the turbulence area were compared according to the shoe penetration. The results of the study showed that the V-type shoe reduced the strength coefficient decrease effect, and the foundation improvement effect according to the degree of turbulence was identified.

  • PDF