• 제목/요약/키워드: Environmental Turbulence

검색결과 272건 처리시간 0.025초

보일러빌딩 내부 환기현상에 관한 수치적 연구 (Numerical Study on the Ventilation Effect in the Boiler Building)

  • 김철환;유근종;최훈기
    • 한국산업보건학회지
    • /
    • 제15권3호
    • /
    • pp.239-249
    • /
    • 2005
  • Ventilation effect is analyzed for boiler building with multiple heat sources. Air flow inside the boiler building is characterized as turbulent mixed convection. Analysis methodology is set up with two different $k-{\varepsilon}$ type models (standard $k-{\varepsilon}$, RNG $k-{\varepsilon}$). Two different cases with high and low outside temperature are analyzed. In case of high outside temperature condition, mixed convection is well realized inside the boiler building. With different upper louver opening rate, air flow is also well established and proper opening rate is found to meet design limit in case of low outside temperature condition. Difference of analysis results for two different turbulence models are not significant. Therefore, analysis methodology with simple $k-{\varepsilon}$ turbulence model is found to be reliable for the boiler building ventilation analysis. However, more simplified geometrical model is desired to expand its application.

Verification of a tree canopy model and an example of its application in wind environment optimization

  • Yang, Yi;Xie, Zhuangning;Tse, Tim K.T.;Jin, Xinyang;Gu, Ming
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.409-421
    • /
    • 2012
  • In this paper, the method of introducing additional source/sink terms in the turbulence and momentum transport equations was applied to appropriately model the effect of the tree canopy. At first, the new additional source term for the turbulence frequency ${\omega}$ equation in the SST k-${\omega}$ model was proposed through theoretical analogy. Then the new source/sink term model for the SST k-${\omega}$ model was numerically verified. At last, the proposed source term model was adopted in the wind environment optimal design of the twin high-rise buildings of CABR (China Academy of Building Research). Based on the numerical simulations, the technical measure to ameliorate the wind environment was proposed. Using the new inflow boundary conditions developed in the previous studies, it was concluded that the theoretically reasonable source term model of the SST k-${\omega}$ model was applicable for modeling the tree canopy flow and accurate numerical results are obtained.

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

Coupled dynamic responses of a semisubmersible under the irregular wave and turbulent wind

  • Dey, Swarnadip;Saha, Kaushik;Acharya, Pooja;Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.441-459
    • /
    • 2018
  • A coupled dynamic analysis of a semisubmersible-type FOWT has been carried out in time domain under the combined action of irregular wave and turbulent wind represented respectively by JONSWAP spectrum and Kaimal spectrum. To account for the turbine-floater motion coupling in a more realistic way, the wind turbulence has been incorporated into the calculation of aerodynamic loads. The platform model was referred from the DeepCwind project and the turbine considered here was the NREL 5MW Baseline. To account for the operationality of the turbine, two different environmental conditions (operational and survival) have been considered and the aerodynamic effect of turbine-rotation on actual responses of the FOWT has been studied. Higher mean offsets in surge and pitch responses were obtained under the operational condition as compared to the survival condition. The mooring line tensions were also observed to be sensitive to the rotation of turbine due to the turbulence of wind and overestimated responses were found when the constant wind was considered in the analysis. Additionally, a special analysis case of sudden shutdown of the turbine has also been considered to study the swift modification of responses and tension in the mooring cables.

A Numerical Study on the Karman Vortex Generated by Breaking of Mountain Wave

  • Sung-Dae Kang;Fujio Kimura
    • 한국환경과학회지
    • /
    • 제1권2호
    • /
    • pp.105.2-117
    • /
    • 1992
  • The formation mechanism of the vortex streets in the lee of the mountain Is Investigated by a three-dimensional numerical model. The model is based upon the hydrostatic Boussinesq equations in which the vertical turbulent momentum flux is estimated by a turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant. The results show that Karman vortex streets can form even without surface friction in a constant ambient flow with uniform stratification. The vortex formation is related to breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than about 0.8, while a barman vortex forms when Fr is less than about 0.22. Vortex formation also depends on Reynolds number, which is estimated from the horizontal diffusivity. The vortex formation can be explained by the wave saturation theory given by Lindzen (1981) with some modification. Simulations in this study show that in the case of Karman vortex formation the momentum flux in the lower level is much larger than the saturated momentum flux, whereas it is almost equal to the saturated momentum at the upper levels as expected from the saturation theory. As a result, large flux divergence is produced in the lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear forms between unmodified ambient wind. The momentum exchange between the mean flow and the mountain wave is produced by the turbulence within a breaking wave. From the result, well developed vortices like Karman vortex can be formed. . The results of the momentum budget calculated by the hydrostatic model are almost the same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well developed barman vortex similar to the hydrostatic one was simulated in the nonhydrostatic case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the origin of the Km8n vortex from the viewpoint of wave breaking.

  • PDF

A combination method to generate fluctuating boundary conditions for large eddy simulation

  • Wang, Dayang;Yu, X.J.;Zhou, Y.;Tse, K.T.
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.579-607
    • /
    • 2015
  • A Combination Random Flow Generation (CRFG) technique for obtaining the fluctuating inflow boundary conditions for Large Eddy Simulation (LES) is proposed. The CRFG technique was developed by combining the typical RFG technique with a novel calculation of k and ${\varepsilon}$ to estimate the length- and time-scales (l, ${\tau}$) of the target fluctuating turbulence field used as the inflow boundary conditions. Through comparatively analyzing the CRFG technique and other existing numerical/experimental results, the CRFG technique was verified for the generation of turbulent wind velocity fields with prescribed turbulent statistics. Using the turbulent velocity fluctuations generated by the CRFG technique, a series of LESs were conducted to investigate the wind flow around S-, R-, L- and U-shaped building models. As the pressures of the models were also measured in wind tunnel tests, the validity of the LES, and the effectiveness of the inflow boundary generated by the CRFG techniques were evaluated through comparing the simulation results to the wind tunnel measurements. The comparison showed that the LES accurately and reliably simulates the wind-induced pressure distributions on the building surfaces, which indirectly validates the CRFG technique in generating realistic fluctuating wind velocities for use in the LES. In addition to the pressure distribution, the LES results were investigated in terms of wind velocity profiles around the building models to reveal the wind flow dynamics around bluff bodies. The LES results quantitatively showed the decay of the bluff body influence when the flow moves away from the building model.

Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings

  • Gol-Zaroudi, Hamzeh;Aly, Aly-Mousaad
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.233-259
    • /
    • 2017
  • Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind.

Numerical simulation of wind loading on roadside noise mitigation structures

  • TSE, K.T.;Yang, Yi;Shum, K.M.;Xie, Zhuangning
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.299-315
    • /
    • 2013
  • Numerical research on four typical configurations of noise mitigation structures and their characteristics of wind loads are reported in this paper. The turbulence model as well the model parameters, the modeling of the equilibrium atmospheric boundary layer, the mesh discretization etc., were carefully considered in the numerical model to improve the numerical accuracy. Also a numerical validation of one configuration with the wind tunnel test data was made. Through detailed analyses of the wind load characteristics with the inclined part and the wind incidence angle, it was found that the addition of an inclined part to a noise mitigation structure at-grade would affect the mean nett pressure coefficients on the vertical part, and that the extent of this effect depends on the length of the inclined part itself. The magnitudes of the mean nett pressure coefficients for both the vertical part and the inclined part of noise mitigation structure at-grade tended to increase with length of inclined part. Finally, a comparison with the wind load code British/European Standard BS EN 1991-1-4:2005 was made and the envelope of the mean nett pressure coefficients of the noise mitigation structures was given for design purposes. The current research should be helpful to improve current wind codes by providing more reasonable wind pressure coefficients for different configurations of noise mitigation structures.

k-𝜔 SST 모형을 이용한 수중도수와 잠긴흐름의 수치모의 (Numerical simulation of submerged jump and washed-out jump using the k-𝜔 SST model)

  • 최성욱;최성욱
    • 한국수자원학회논문집
    • /
    • 제54권11호
    • /
    • pp.1011-1019
    • /
    • 2021
  • 본 연구에서는 제방 형태의 보를 월류하는 수중도수와 잠긴흐름을 수치모의 하였다. 수치모의를 위하여 URANS 방정식을 해석하였으며, 난류폐합식으로 k-𝜔 모형을 사용하였다. 기존의 실험결과를 이용하여 수치모형을 검증하였는데, 모의된 롤러의 형상, 자유수면, 그리고 평균유속분포가 실험결과와 비교적 잘 일치하는 것을 확인하였다. 수중도수와 잠긴흐름에서 물의 체적비 분포를 비교하였으며, 각 흐름에 대한 2중 평균된 체적비의 특성을 제시하였다. 수치모의를 이용하여 보의 길이, 유량, 그리고 하류 수위에 따라 수중도수에서 잠긴흐름으로 천이되는 조건을 검토하였으며, 천이가 발생할 때의 상대 월류수심을 침수비의 함수로 제시하였다.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.