DOI QR코드

DOI QR Code

Numerical simulation of submerged jump and washed-out jump using the k-𝜔 SST model

k-𝜔 SST 모형을 이용한 수중도수와 잠긴흐름의 수치모의

  • Choi, Seongwook (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Sung-Uk (Department of Civil and Environmental Engineering, Yonsei University)
  • 최성욱 (연세대학교 건설환경공학과) ;
  • 최성욱 (연세대학교 건설환경공학과)
  • Received : 2021.09.29
  • Accepted : 2021.11.19
  • Published : 2021.11.30

Abstract

This study presents numerical simulations of submerged jump and washed-out jump resulted from the flow over the embankment type weir. Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are solved with the k-𝜔 SST turbulence model. Validations are carried out using the experimental results in the literature, revealing that computed roller shape, free surface, and mean velocity are in good agreement with measured data. The volume fractions of water of the submerged jump and washed-out jump are compared, and the characteristics of the two flows from the double-averaged volume fractions of water are presented. The condition under which the transition occurs from the submerged jump to washed-out jump is presented by the relation between the relative embankment length and submergence factor via numerical simulations by changing the weir length, discharge, and tailwater depth.

본 연구에서는 제방 형태의 보를 월류하는 수중도수와 잠긴흐름을 수치모의 하였다. 수치모의를 위하여 URANS 방정식을 해석하였으며, 난류폐합식으로 k-𝜔 모형을 사용하였다. 기존의 실험결과를 이용하여 수치모형을 검증하였는데, 모의된 롤러의 형상, 자유수면, 그리고 평균유속분포가 실험결과와 비교적 잘 일치하는 것을 확인하였다. 수중도수와 잠긴흐름에서 물의 체적비 분포를 비교하였으며, 각 흐름에 대한 2중 평균된 체적비의 특성을 제시하였다. 수치모의를 이용하여 보의 길이, 유량, 그리고 하류 수위에 따라 수중도수에서 잠긴흐름으로 천이되는 조건을 검토하였으며, 천이가 발생할 때의 상대 월류수심을 침수비의 함수로 제시하였다.

Keywords

Acknowledgement

본 연구는 2021년도 정부의 재원으로 한국연구재단의 지원(NRF2020R1A2B5B01098937)을 받아 수행된 연구입니다. 이에 감사드립니다.

References

  1. Azimi, A.H., Rajaratnam, N., and Zhu, D.Z. (2016). "Water surface characteristics of submerged rectangular sharp-crested weirs." Journal of Hydraulic Engineering, Vol. 142, No. 5, 06016001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001110
  2. Fritz, H.M., and Hager, W.H. (1998). "Hydraulics of embankment weirs." Journal of Hydraulic Engineering, Vol. 124, No. 9, pp. 963-971. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:9(963)
  3. Gunal, M., and Narayanan, R. (1996). "Hydraulic jump in sloping channels." Journal of Hydraulic Engineering, Vol. 122, No. 8, pp. 436-442. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:8(436)
  4. Hager, W.H. (1988). "B-jump in sloping channel." Journal of Hydraulic Research, Vol. 26, No. 5, pp. 539-558. https://doi.org/10.1080/00221688809499192
  5. Hirt, C.W., and Nichols, B.D. (1981). "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of Computational Physics, Vol. 39, No. 1, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  6. Jasak, H. (2009). "OpenFOAM: Open source CFD in research and industry." International Journal of Naval Architecture and Ocean Engineering, Vol. 1, No. 2, pp, 88-94.
  7. Kim, S. (2020). Operation and management methods for improving the flow safety of Singok-submerged weir. Seoul Institute of Technology.
  8. Kindsvater, C.E. (1964). Discharge characteristics of embankment-shaped weirs. Geological Survey Water-Supply Paper, No. 1617, US Government Printing Office, Washington, D.C., U.S.
  9. Menter, F.R. (1992). Improved two-equation k-omega turbulence models for aerodynamic flows. NASA Ames Research Center, Moffett Field, CA, U.S.
  10. Menter, F.R., and Esch, T. (2001). "Elements of industrial heat transfer predictions." 16th Brazilian Congress of Mechanical Engineering, Uberlandia, Brazil, Vol. 109, p. 650.
  11. Ohtsu, I., and Yasuda, Y. (1991). "Hydraulic jump in sloping channels." Journal of Hydraulic Engineering, Vol. 117, No. 7, pp. 905-921. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:7(905)
  12. Paik, J., and Lee, N.J. (2015). "Numerical modeling of free surface flow over a broad-crested rectangular weir." Journal of Korea Water Resources Association, Vol. 48, No. 4, pp. 281-290. https://doi.org/10.3741/JKWRA.2015.48.4.281
  13. Van Leer, B. (1974). "Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme." Journal of Computational Physics, Vol. 14, No. 4, pp. 361-370. https://doi.org/10.1016/0021-9991(74)90019-9
  14. Wu, S., and Rajaratnam, N. (1996). "Submerged flow regimes of rectangular sharp-crested weir." Journal of Hydraulic Engineering, Vol. 122, No. 7, pp. 412-414. https://doi.org/10.1061/(asce)0733-9429(1996)122:7(412)
  15. Wu, S., and Rajaratnam, N. (1998). "Impinging jet and surface flow regimes at drop." Journal of Hydraulic Research, Vol. 36, No. 1, pp. 69-74. https://doi.org/10.1080/00221689809498378