• Title/Summary/Keyword: Environmental Quality Evaluation

Search Result 1,244, Processing Time 0.037 seconds

Evaluation of Contamination Level of the Sediments from Chusori and Chudong Areas in Daechung Reservoir (대청호 추소 및 추동 수역 퇴적물의 오염도 평가)

  • Oh, Kyoung-Hee;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • In order to analyze the contamination level of sediment samples taken from Chusori and Chudong areas in Daechung Reservoir, the particle size and concentrations of organics and nutrients were analyzed and phosphorus fractionation analysis was conducted. The average fraction of silt-sized particles was 92% in the sediments taken from Chudong area and Chusori area at the site adjacent to main current, which was higher than that from the upper Chusori area. The concentrations of total phosphorus in the sediments at Chusori and Chudong area were 999 (${\pm}98$) and 1,123 (${\pm}119$) mg/kg sediment, respectively. The fractions of autochthonous phosphorus, which can be readily eluted by change of environmental conditions, were much higher than those of allochthonous phosphorus, indicating the internal load can contribute the eutrophication in these areas. The concentrations of total nitrogen were over 5,600 mg/kg sediment in all samples, which is the guideline of Contamination Assessment of River and Lake Sediments of the Ministry of Environment, indicating the contamination level of total nitrogen is serious in the sediments. It is concluded that the countermeasures to manage the quality of sediments are required to improve the water quality in the Daechung Reservoir.

Development of River Recreation Index Model by Synthesis of Water Quality Parameters (수질인자의 합성에 의한 하천 레크리에이션 지수 모델의 개발)

  • Seo, Il Won;Choi, Soo Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1395-1408
    • /
    • 2014
  • In this research, a River Recreation Index Model (RRIM) was developed to provide sufficient information on the water quality of rivers to the public in order to secure safety of publics. River Recreation Index (RRI) is an integrated water quality information for recreation activities in rivers and expressed as the point from 0 to 100. The proposed RRIM consisted of two sub models: Fecal Coliform Model (FCM) and Water Quality Index Model (WQIM). FCM predicted Fecal Coliform Grade (FCG) using a logistic regression and WQIM synthesized water quality parameters of, DO, pH, turbidity and chlorophyll a into Water Quality Index (WQI). FCG and WQI were integrated into RRI by the integrating algorithm. The proposed model was applied to upstream of Gangjeong Weir in Nakdong River, and compared with Real Time Water Quality Index (RTWQI) which is the existing water quality information system for recreation use. The results show that calculated RRI reflected change of integrated water quality parameters well. Especially chlorophyll a showed Pearson correlation coefficient -0.85 with RRI. Also, RRIM produced more conservative index than RTWQI because RRI was calculated considering uncertainty of water quality criteria. Further, RRI showed especially low values when fecal coliform was predicted as low grade.

Evaluation of Ensemble Approach for O3 and PM2.5 Simulation

  • Morino, Yu;Chatani, Satoru;Hayami, Hiroshi;Sasaki, Kansuke;Mori, Yasuaki;Morikawa, Tazuko;Ohara, Toshimasa;Hasegawa, Shuichi;Kobayashi, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.150-156
    • /
    • 2010
  • Inter-comparison of chemical transport models (CTMs) was conducted among four modeling research groups. Model performance of the ensemble approach to $O_3$ and $PM_{2.5}$ simulation was evaluated by using observational data with a time resolution of 1 or 6 hours at four sites in the Kanto area, Japan, in summer 2007. All groups applied the Community Multiscale Air Quality model. The ensemble average of the four CTMs reproduced well the temporal variation of $O_3$ (r=0.65-0.85) and the daily maximum $O_3$ concentration within a factor of 1.3. By contrast, it underestimated $PM_{2.5}$ concentrations by a factor of 1.4-2, and did not reproduce the $PM_{2.5}$ temporal variation at two suburban sites (r=~0.2). The ensemble average improved the simulation of ${SO_4}^{2-}$, ${NO_3}^-$, and ${NH_4}^+$, whose production pathways are well known. In particular, the ensemble approach effectively simulated ${NO_3}^-$, despite the large variability among CTMs (up to a factor of 10). However, the ensemble average did not improve the simulation of organic aerosols (OAs), underestimating their concentrations by a factor of 5. The contribution of OAs to $PM_{2.5}$ (36-39%) was large, so improvement of the OA simulation model is essential to improve the $PM_{2.5}$ simulation.

Evaluation of the performance and the removal characteristics of natural organic matter in a modular mobile water production system (모듈형 이동식 물생산 시스템 운전 성능 및 자연 유기물 제거 거동 평가)

  • Hwang, Yuhoon;Yang, Philje;Song, Jimin;Hong, Minji;Choi, Changhyung;Ko, Seokoh;Kim, Dogun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.55-65
    • /
    • 2018
  • It is necessary to develop a mobile water production system in order to provide stable water supply in case of disasters such as floods or earthquakes. In this study, we developed a modular mobile water production system capable of producing water for various uses such as domestic water and drinking water while improving applicability in various raw water sources. The water production system consists of three stages of filtration (sand filtration - activated carbon filtration - pressure filtration) to produce domestic water and an additional reverse osmosis process to produce drinking water. In laboratory and field experiments, the domestic water production system showed excellent treatment efficiency for particulate matter, but showed limitations in the treatment of dissolved substances such as dissolved organic matter. In addition, ultraviolet irradiation was considered as additional disinfection step, because it does not form precipitates of manganese oxides after disinfection. Reverse osmosis process was added to increase the removal efficiency of dissolved substances and the treated water satisfied drinking water quality standards. Fluorescence analysis of dissolved organic matter showed that the fulvic acid-like substances in raw water was successfully removed in the reverse osmosis process. The mobile water production system developed in this study is expected to be used not only in water supply in case of disaster, but also widely used in islands and rural area.

Evaluation of SWAT Model for Nutrient Load from Small Watershed in Juam Lake (주암호 소유역의 영양물질 부하 추정을 위한 SWAT 모형의 적용성 평가)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Han, Kuk-Heon;Choi, Woo-Young;Lee, Jun-Bae;Choi, Hun-Geun
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1027-1033
    • /
    • 2009
  • For the assesment of pollutant loads, a monitoring has been conducted to identify hydrologic conditions and water quality of the Oenam watershed in Juam Lake, and the SWAT model integrated with GIS was applied to the watershed and evaluated for its applicability through calibration and verification using observed data. For the model application, digital maps were constructed for watershed boundary, land-use, soil series, digital elevation, and topographic input data of the Oenam watershed using Arcview. The observed runoff was 832.8 mm while the simulated runoff was 842.8 mm in 2003. The model results showed that the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability of the model. In terms of nutrient load, the simulation results of T-N, T-P showed a similar trend to observed values. The observed T-N load was 10.8 kg/ha and the simulated T-N load was 7.6 kg/ha while the observed T-P load was 0.21 kg/ha and the simulated T-P load was 0.18 kg/ha. In general, SWAT model predicted observed runoff and loads of T-N and T-P after calibration with observed data in acceptable range. Overall, SWAT model was satisfactory in estimation of nutrient pollutant loads of the rural watershed.

Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process (BAC 공정에서 운전기간 및 여층깊이 변화에 따른 생물막 생체량 및 용존유기물질 생분해 특성 평가)

  • Son, Hyeng-Sik;Jung, Chul-Woo;Choi, Young-Ik;Lee, Gun;Son, Hee-Jong
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1101-1109
    • /
    • 2014
  • In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and -90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were $2.1{\mu}g{\cdot}ATP/g{\cdot}GAC$ and $3.3{\times}10^8cells/g{\cdot}GAC$, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon ($BDOC_{total}$), $BDOC_{slow}$ and $BDOC_{rapid}$ were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (${\mu}_{ATP}=0.73day^{-1}$; ${\mu}_{HPC}=1,74day^{-1}$) and 78%~87% slower in the bottom layer (${\mu}_{ATP}=0.14day^{-1}$; ${\mu}_{HPC}=0.34day^{-1}$). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.

Development of the Algorithm of a Public Transportation Route Search Considering the Resistance Value of Traffic Safety and Environmental Index (교통안전, 환경지표의 저항값을 고려한 대중교통 경로 탐색 알고리즘 개발)

  • Kim, Eun-Ji;Lee, Seon-Ha;Cheon, Choon-Keun;Yu, Byung-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.78-89
    • /
    • 2017
  • This study derived the algorithm of a public transportation route search that adds safety and environmental costs according to user preference. As the means of an algorithm application and evaluation, Macro Simulation, VISUM was conducted for an analysis. The route using the subway, which is relatively low in safety and environment resistance value was preferred, and it was analyzed to select the safe and environmental route even though it detours. This study can be applicable when to verify the algorithm of route search considering safety and environment, and when introducing the algorithm of route search according to user preference in the smart-phone application in the future, it can provide users with very useful information by choosing a route as for safety and environment, and through this, the quality of user-friendly information provision can be promoted.

A Study on the Development of Convergence Educational Program for Children - Focus on Convergence hand-on Education between Design and Robot Science - (어린이를 위한 융·복합 디자인 교육 프로그램 개발연구 - 디자인과 로봇공학의 융·복합 체험교육을 중심으로 -)

  • Han, Hae-Ryon;Jo, Hye-Gyeong;Jang, Yon-Hwa;Ban, Ja-Yuen;Lee, Yun-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.222-230
    • /
    • 2013
  • The convergence progress in science technology and ensuing changes in educational environments require another huge change in education programs in the 21st century defined as a knowledge-based information society. But nowadays, prospective college students are increasingly avoiding natural science and engineering. So, educational fields in korea need suitable convergence educational programs (STEAM: science, technology, engineering, arts, mathematics) for creative competent person who is training and experiencing. In addition, environmental design fields are predicting about spread of Kinetic architecture. Therefore the aim of this study is developing convergence hand-on educational program which is incorporate robot science into environmental design for children. The program and teaching materials were developed by mapping between robot science and environmental design process leading the Design Promote Committee in KIID(Korea Institute of Interior Design) supported research teams in Hansung University. And then, For utility of the program, we had a 3 times of demonstration of empirical education. First, graduate students of design and robot major, and small group of children who are selected, at last, 63 children who are applying the program randomly. For more high quality program, we were conducting survey of post-empirical education evaluation for children and their parents. In conclusion, we found out highly satisfaction of the program those two groups. Also they need more organized places, time, task and so on. And the convergence educational program would develop by systematic approach and empirical research. At last, various and series convergence programs and teaching materials would develop creative competency based for regular and irregular courses of whole educational period.

Evaluation of the Influence of the Method of Sample Preparation on the Shearing Behavior of Sands using Elastic Waves (탄성파를 통한 시료성형방법에 따른 모래 전단거동특성 평가)

  • Yoo, Jinkwon;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.57-65
    • /
    • 2014
  • For economic and technical reasons, it is difficult to obtain high quality undisturbed cohesionless samples, hence most researchers rely on preparing remolded and reconstituted representative samples of sandy soils. In this study, moist tamping, air pluviation, and dry deposition methods were applied to make remolded samples at similar relative densities. A series of isotropically consolidated drained tests were conducted with accompanied by measured elastic wave velocities in order to evaluate a difference between sample preparation methods and relative densities. For the elastic wave velocity measurements, piezoelectric elements were installed on the top and bottom cap of the triaxial device. The results showed that soil behavior relies on sample preparation methods, and that the trend of shear wave velocity was the same with volumetric strain behavior.

Development of Certified Reference Materials for Analysis of Heavy Metals in Paints to Cope with Environmental Regulations (환경규제 대응을 위한 페인트 중의 중금속 분석용 인증 표준물질 개발)

  • Yu, Byung Kyu;Sun, Yle Shik
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.209-219
    • /
    • 2018
  • In the areas of RoHS, WEEE, ELV and REACH, reinforcement of environmental regulations against harmful substances is a global trend not only in EC but also in all over the world. In the fields of Korea's major export products such as material parts, electrical and electronic products and automobile parts, we are responding to these regulations consistently. To develop reference material for analyzing lead and cadmium in paints, the candidate materials were produced through the screening process which separated shapes and sizes. To secure the traceability of the candidate materials produced, the characteristics and uncertainties are estimated by ICP-AES analysis using the primary reference material. The short-term and long-term stabilities also are evaluated in parallel. In order to calculate the final certification value of the candidate material, the verification were carried out by the performance evaluation through the comparison among the KOLAS (Korea Laboratory Accreditation Scheme) laboratories, and the CRM was produced in accordance with ISO Guide 35. The certified values and uncertainties of Pb and Cd of the final paint standard, determined according to the joint analysis among laboratories, are Pb [($191.4{\pm}3.1$) mg/kg, ($944.1{\pm}5.6$) mg/kg] and Cd [($45.0{\pm}2.6$) mg/kg, ($225.5{\pm}3.5$) mg/kg]. These standard materials were developed to enhance the reliability of measurement analysis, including the validity and traceability of measurement results. Also it is expected that the CRM will be used as QCM (quality control material) for the product design and the process monitoring, so that regulation and management of hazardous heavy metals can be systematically implemented.