DOI QR코드

DOI QR Code

Development of River Recreation Index Model by Synthesis of Water Quality Parameters

수질인자의 합성에 의한 하천 레크리에이션 지수 모델의 개발

  • 서일원 (서울대학교 공과대학 건설환경공학부) ;
  • 최수연 (서울대학교 공과대학 건설환경공학부)
  • Received : 2014.03.03
  • Accepted : 2014.06.30
  • Published : 2014.10.01

Abstract

In this research, a River Recreation Index Model (RRIM) was developed to provide sufficient information on the water quality of rivers to the public in order to secure safety of publics. River Recreation Index (RRI) is an integrated water quality information for recreation activities in rivers and expressed as the point from 0 to 100. The proposed RRIM consisted of two sub models: Fecal Coliform Model (FCM) and Water Quality Index Model (WQIM). FCM predicted Fecal Coliform Grade (FCG) using a logistic regression and WQIM synthesized water quality parameters of, DO, pH, turbidity and chlorophyll a into Water Quality Index (WQI). FCG and WQI were integrated into RRI by the integrating algorithm. The proposed model was applied to upstream of Gangjeong Weir in Nakdong River, and compared with Real Time Water Quality Index (RTWQI) which is the existing water quality information system for recreation use. The results show that calculated RRI reflected change of integrated water quality parameters well. Especially chlorophyll a showed Pearson correlation coefficient -0.85 with RRI. Also, RRIM produced more conservative index than RTWQI because RRI was calculated considering uncertainty of water quality criteria. Further, RRI showed especially low values when fecal coliform was predicted as low grade.

본 연구에서는 시민들이 하천에서 안전하고 쾌적하게 레크리에이션 활동을 할 수 있도록 종합 수질 정보를 제공하는 하천 레크리에이션 지수 산정 모델을 개발하였다. 하천 레크리에이션 지수 모델은 분변성 대장균 모델과 수질지수 모델을 통합하여 구성하였다. 분변성 대장균 모델에서는 로지스틱 회귀분석을 사용하여 분변성 대장균 등급을 예측하였고, 수질지수 모델에서는 DO, pH, 탁도, 클로로필 a를 퍼지 합성방법을 통해 종합화하여 수질 지수를 산정하였다. 최종 단계에서 분변성 대장균 등급과 수질 지수를 통합하여 하천 레크리에이션 지수를 산정할 수 있도록 모델을 개발하였다. 제안된 모델을 낙동강의 강정고령보 상류 지점에 적용한 결과, 하천 레크리에이션 지수는 개별 수질인자들의 변화를 잘 반영하는 것으로 나타났다. 특히 하천 레크리에이션 지수와 클로로필 a의 상관계수가 -0.85로 나타나 클로로필 a가 하천 레크리에이션 지수에 가장 많은 영향을 미치고 있음을 확인할 수 있었다. 본 모델에서 산정한 종합수질지수는 기존 수질 정보 제공 시스템인 실시간 수질지수보다 보수적인 결과를 보였는데, 이는 등급에 따라 현재의 수질 상태가 어떠한 상태에 속하는지를 계산하고 수질 기준의 불확실성을 적절하게 고려하기 때문인 것으로 판단되었다. 나아가서, 분변성 대장균 등급이 낮을 경우 하천 레크리에이션 지수가 분변성 대장균을 고려하지 않고 있는 실시간 수질지수보다 낮은 결과를 제시하는 것으로 나타났다.

Keywords

References

  1. Allison, P. D. (2012). Logistic regression using SAS: Theory and Application, SAS Publishing, Cary, N.C.
  2. Brown, R. M., McClleland, N. I., Deininger, R. A. and Tozer, R. (1970). "A water quality index - Do we dare." Water and Sewage Works, Vol. 117, No. 10, pp. 339-343.
  3. Chang, N. B., Chen, H. W. and Ning, S. K. (2001). "Identification of river water quality using the fuzzy synthetic evaluation approach." Journal of Environmental Management, Vol. 63, No. 3, pp. 293-305. https://doi.org/10.1006/jema.2001.0483
  4. Choi, J. Y. (1996). Development of water quality index, Korea Environmental Technology Research Institute (in Korean).
  5. Christensen, V. G., Jian, X. and Ziegler, A. C. (2000). Regression analysis and real-time water-quality monitoring to estimate constituent concentrations, loads, and yields in the Little Arkansas River, south-central Kansas, 1995-99, Water Resources Investigations Report No. 00-4126, United States Geological Survey, Lawrence, Kansas.
  6. Clark, M. L. and Norris, J. R. (2000). Occurrence of fecal coliform bacteria in selected streams in Wyoming, 1990-99, USGS Water Resources Investigations Report No. 00-4198, United States Geological Survey, Cheyenne, Wyoming.
  7. Crowther, J., Kay, D. and Wyer, M. D. (2001). "Relationships between water quality and environmental conditions in coastal recreational waters: The Fylde Coast, UK." Water Research, Vol. 35, No. 17, pp. 4029-4038. https://doi.org/10.1016/S0043-1354(01)00123-3
  8. Dinius, S. H. (1987). "Design of an index of water quality." Water Resources Bulletin, Vol. 23, No. 5, pp. 833-842. https://doi.org/10.1111/j.1752-1688.1987.tb02959.x
  9. Dunnette, D. A. (1979). "A geographically variable water quality index used in Oregon." Journal (Water Pollution Control Federation), Vol. 51, No. 1, pp. 53-61.
  10. Eleria, A. and Vogel, R. M. (2005). "Predicting fecal coliform bacteria levels in the Charles River, Massachusetts, USA." Journal of American Water Resources Association, Vol. 41, No. 5, pp. 1195-1209. https://doi.org/10.1111/j.1752-1688.2005.tb03794.x
  11. Ferguson, C. M., Coote, B. G., Ashbolt, N. J. and Stevenson, I. M. (1996). "Relationships between indicators, pathogens and water quality in an estuarine system." Water Resources, Vol. 30, No. 9, pp. 2045-2054.
  12. Francy, D. S. and Darner, R. A. (2007). Nowcasting beach advisories at Ohio Lake Erie beaches, Geological Survey Open-File Report 2007-1427, United States Geological Survey.
  13. Harkins, R. D. (1974). "An objective water quality index." Journal (Water Pollutants Control Federation), Vol. 46, No. 3, pp. 588-591.
  14. He, L. M. L. and He, Z. L. (2008). "Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in Southern California, USA." Water research, Vol. 42, No. 10-11, pp. 2563-2573. https://doi.org/10.1016/j.watres.2008.01.002
  15. House, M. A. and Ellis, J. B. (1987). "The development of water quality Indices for operational management." Water Science and Technology, Vol. 19, No. 9, pp. 145-154.
  16. Icaga, Y. (2007). "Fuzzy evaluation of water quality classification." Ecological Indicators, Vol. 7, No. 3, pp. 710-718. https://doi.org/10.1016/j.ecolind.2006.08.002
  17. Jang, J. S. R., Sun, C. T. and Mizutani, E. (1997). Neuro-fuzzy and soft computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, Saddle River, N.J.
  18. Joung, H. M., Miller, W. W., Mahannah, C. N. and Guitjens, J. C. (1979). "A generalized water quality index based on multivariate factor analysis." Journal of Environmental Quality, Vol. 8, No. 1, pp. 95-100.
  19. Kim, K. B., Kim, J. H., Jeong, Y., Jeong, Y. S. and Chung, S. J. (2012). "Prediction of coastal fecal indicator bacteria concentrations using multivariate data analysis." Journal of Environmental Science and Engineering A, Vol. 1, No. 4, pp. 440-447.
  20. King, G. and Zeng, L. (2001). "Logistic regression in rare events data." Political Analysis, Vol. 9, No. 2, pp. 137-163. https://doi.org/10.1093/oxfordjournals.pan.a004868
  21. Lermontov, A., Yokoyama, L., Lermontov, M. and Machado, M. A. S. (2009). "River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil." Ecological Indicators, Vol. 9, No. 6, pp. 1188-1197. https://doi.org/10.1016/j.ecolind.2009.02.006
  22. Lu, R. S., Lo, S. L. and Hu, J. Y. (1999). "Analysis of reservoir water quality using fuzzy synthetic evaluation." Stochastic Environmental Research and Risk Assessment, Vol. 13, No. 5, pp. 327-336. https://doi.org/10.1007/s004770050054
  23. Maimone, M., Crockett, C. S. and Cesanek, W. E. (2007). "Philly River Cast: A Real-Time Bacteria Forecasting Model and Web Application for the Schuylkill River." Journal of Water Resources Planning and Management, Vol. 133, No. 6, pp. 542-549. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:6(542)
  24. Ministry of Land, Transport and Maritime Affairs (MLTMA)(2009). Nakdong river master plan, Ministry of Land, Transport and Maritime Affairs (in Korean).
  25. National Institute of Environmental Research (2013). Criteria of water quality and hydroecology, Available at: http://water.nier.go.kr/front/waterEasy/policy01.jsp (Accessed: August 8, 2013).
  26. National Institute of Environmental Research (2013). Forecast system of algae, Available at: http://water.nier.go.kr/front/waterEasy/policy04.jsp (Accessed: August 11, 2013).
  27. National Institute of Environmental Research (2013). Real time water quality index, Available at: http://koreawqi.go.kr/index_web.jsp (Accessed: November 15, 2013).
  28. O'Connor, F. M. (1972). The application of multi-attribute scaling procedures to the development of indices of value, Ph.D. Dissertation, University of Michigan, Ann Arbor, Michigan, USA.
  29. Prati, L., Pavanello, R. and Pesarin, F. (1971). "Assessment of surface water quality by a single index of pollution." Water Research, Vol. 5, No. 9, pp. 741-751. https://doi.org/10.1016/0043-1354(71)90097-2
  30. Seo, I. W. and Choi, S. Y. (2014). "Development of recreation index model and its applications to Nakdong River, Korea." Proceeding of 7th International Conference on Environmental Hydraulics, ISEH, Singapore, pp. 122-125.
  31. Silvert, W. (2000). "Fuzzy indices of environmental conditions." Ecological Modelling, Vol. 130, No. 1, pp. 111-119. https://doi.org/10.1016/S0304-3800(00)00204-0
  32. Sung, O. H. (2001). Applied logistic regression analysis, Tamjin (in Korean).
  33. Thomann, R. V. and Mueller, J. A. (1987). Principle of surface water quality modeling and control, Harper Collins, New York, N.Y.
  34. United Nations (1993). Readings in international environment statistics, United Nations, Washington, D.C.
  35. United States Environmental Protection Agency (1986). Ambient water quality criteria for bacteria, United States Environmental Protection Agency, Washington, D.C.
  36. United States Environmental Protection Agency (2013). Water:State, Tribal & Territorial Standards, Available at: http://water.epa.gov/scitech/swguidance/standards/wqslibrary/index.cfm (Accessed: October, 10, 2013).
  37. Walski, T. M. and Parker, F. L. (1974). "Consumers water quality index." Journal of Environmental Engineering Division, Vol. 100, No. 3, pp. 593-611.
  38. World Health Organization (1998). Guidelines for drinking-water quality, 2nd ed. Addendum to volume 2. Health criteria and other supporting information, World Health Organization, Geneva.
  39. World Health Organization (2003). Guidelines for safe recreational water environments, Volume 1: Coastal and Fresh Waters, World Health Organization, Geneva.
  40. Zadeh, L. A. (1965). "Fuzzy sets." Information and Control, Vol. 8, No. 3, pp. 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X