DOI QR코드

DOI QR Code

Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process

BAC 공정에서 운전기간 및 여층깊이 변화에 따른 생물막 생체량 및 용존유기물질 생분해 특성 평가

  • Son, Hyeng-Sik (Division of Policy Panning, Ulsan Technopark) ;
  • Jung, Chul-Woo (Division of Policy Panning, Ulsan Technopark) ;
  • Choi, Young-Ik (Dept. of Environmental Engineering, Dong-A University) ;
  • Lee, Gun (Dept. of Environmental Engineering, Dong-A University) ;
  • Son, Hee-Jong (Water Quality Institute, Water Authority)
  • 손형식 (울산 테크노파크 정책기획단) ;
  • 정철우 (울산 테크노파크 정책기획단) ;
  • 최영익 (동아대학교 환경공학과) ;
  • 이건 (동아대학교 환경공학과) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2014.04.24
  • Accepted : 2014.05.23
  • Published : 2014.06.30

Abstract

In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and -90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were $2.1{\mu}g{\cdot}ATP/g{\cdot}GAC$ and $3.3{\times}10^8cells/g{\cdot}GAC$, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon ($BDOC_{total}$), $BDOC_{slow}$ and $BDOC_{rapid}$ were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (${\mu}_{ATP}=0.73day^{-1}$; ${\mu}_{HPC}=1,74day^{-1}$) and 78%~87% slower in the bottom layer (${\mu}_{ATP}=0.14day^{-1}$; ${\mu}_{HPC}=0.34day^{-1}$). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.

Keywords

References

  1. Carlson, K. H., Amy, G. L., 1997, The formation of filter-removable biodegradable organic matter during ozonation, Ozone Sci. Eng., 19, 179-199. https://doi.org/10.1080/01919519708547314
  2. Carlson, K. H., Amy, G. L., 1998, BOM removal during biofiltration, J. Am. Water Works Assoc., 90(12), 42-52. https://doi.org/10.1002/j.1551-8833.1998.tb08550.x
  3. Carlson, K. H., Amy, G. L., 2001, Ozone and biofiltration optimization for multiple objectives, J. Am. Water Works Assoc., 93, 88-98.
  4. Chien, C. C., Kao, C. M., Chen, C. W., Dong, C. D., Wu, C. Y., 2008, Application of biofiltration system on AOC removal: column and field studies, Chemosphere, 71, 1786-1793. https://doi.org/10.1016/j.chemosphere.2007.12.005
  5. Dewaters, J. E., Digiano, F. A., 1990, The influence of ozonated natural organic matter on the biodegradation of a micropollutant in a GAC bed, J. Am. Water Works Assoc., 82, 69-75. https://doi.org/10.1002/j.1551-8833.1990.tb07011.x
  6. Fonseca, A. C., Summers, R. S., Hernandez, M. T., 2001, Comparative measurements of microbial activity in drinking water biofilters, Water Res., 35, 3817-3824. https://doi.org/10.1016/S0043-1354(01)00104-X
  7. Herzberg, M., Dosoretz, C. G., Tarre, S., Green, M., 2003, Patchy biofilm coverage can explain the potential advantage of BGAC reactors, Environ. Sci. Technol., 37(18), 4247-4280.
  8. Magic-Knezev, A., van der Kooij, D., 2004, Optimization and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment, Water Res., 38, 3971-3979. https://doi.org/10.1016/j.watres.2004.06.017
  9. Magic-Knezev, A., van der Kooij, D., 2006, Nutritional versatility of two Polaromonas related bacteria isolated from biological granular activated carbon filters, Recent Progress in Slow Sand and Alternative Biofiltration Processes, Gimbel, R., Graham, N., Collins, R., (Eds), IWA Publishing, Mulheim an der Ruhr, Germany, pp. 303-311.
  10. Seredynska-Sobecka, B., Tomaszewska, M., Janus, M., Morawski, A. W., 2006, Biological activation of carbon filters, Water Res., 40, 355-363. https://doi.org/10.1016/j.watres.2005.11.014
  11. Servais, P., Billen, G., Bouillot, P., 1994, Biological colonization of granular activated carbon filters in drinking-water treatment, J. Environ. Eng., 120, 888-899. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(888)
  12. Servais, P., Billen, G., Ventresque, C., Bablon, G. P., 1991, Microbial activity in GAC filters at the Choisy-Le-Roi treatment-plant, J. Am. Water Works Assoc., 83(2), 62-68.
  13. Son, H. J., Choi, J. T., Son, H. S., Lee, S. J., 2012, Analysis of attached bacterial communities of biological activated carbon process using DGGE method, J. Kor. Soc. Environ. Eng., 34(8), 533-540. https://doi.org/10.4491/KSEE.2012.34.8.533
  14. Son, H. J., Park, H. G., Lee, S. A., Jung, E. Y., Jung, C. W., 2005, The characteristics of microbial community for biological activated carbon in water treatment plant, J. Kor. Soc. Environ. Eng., 27, 1311-1320.
  15. Son, H. J., Roh, J. S., Kang, L. S., 2004, Determination of BDOCrapid and BDOCslow using batch bio-reactor, J. Korean Soc. Water Environ., 20(4), 357-364.
  16. Son, H. J., Yoo, S. J., Roh, J. S., Yoo, P. J., 2009, Biological activated carbon (BAC) process in water treatment, J. Kor. Soc. Environ. Eng., 31(4), 308-323.
  17. Stewart, M. H., Wolfe, R. L., Means, E. G., 1990, Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking-water, Appl. Environ. Microbiol., 56, 3822-3829.
  18. Urfer, D., Huck, P. M., 2001, Measurement of biomass activity in drinking water biofilters using a respirometric method, Water Res., 35, 1469-1477. https://doi.org/10.1016/S0043-1354(00)00405-X
  19. van der Aa, L, T, J., Kolpa, R. J., Magic-Knezev, A., Rietveld, L. C., van Dijk, J. C., 2006, Biomass development in biological activated carbon filters, Recent Progress in Slow Sand and Alternative Biofiltration Processes, Gimbel, R., Graham, N., Collins, R., (Eds), IWA Publishing, Mulheim an der Ruhr, Germany, pp. 293-303.
  20. Velten, S., Boller, M., Koster, O., Helbing, J., Weilenmann, H., Hammes, F., 2011, Development of biomass in a drinking water granular active carbon (GAC) filter, Water Res., 45, 6347-6354. https://doi.org/10.1016/j.watres.2011.09.017
  21. Velten, S., Hammes, F., Boller, M., Egli, T., 2007, Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination, Water Res., 41, 1973-1983. https://doi.org/10.1016/j.watres.2007.01.021
  22. Volk, C. J., LeChevallier, M. W., 2002, Effects of conventional treatment on AOC and BDOC levels, J. Am. Water Works Assoc., 94, 112-123.
  23. Wakelin, S. A., Page, D. W., Pavelic, P., Gregg, A. L., Dillon, P. J., 2010, Rich microbial communities inhabit water treatment biofilters and are differentially affected by filter type and sampling depth, Water Sci. & Technol.: Water Suppl., 10, 145-156. https://doi.org/10.2166/ws.2010.570
  24. Wang, J. Z., Summers, R. S., Miltner, R. J., 1995, Biofiltration performance 1. relationship to biomass, J. Am. Water Works Assoc., 87, 55-63. https://doi.org/10.1002/j.1551-8833.1995.tb06465.x
  25. Yapsakli, K., Cecen, F., 2010, Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters, Process Biochem., 45, 355-362. https://doi.org/10.1016/j.procbio.2009.10.005
  26. Yavich, A. A., Lee, K. H., Chen, K. C., Pape, L., Masten, S. J., 2004, Evaluation of biodegradability of NOM after ozonation, Water Res., 38, 2839-2846. https://doi.org/10.1016/j.watres.2004.03.040