• Title/Summary/Keyword: Environmental Monitoring System

Search Result 1,788, Processing Time 0.03 seconds

An Implementation of Context Data Monitoring System based on Ubiquitous Sensor Network (유비쿼터스 센서 네트워크 기반의 상황 정보 모니터링 시스템 구현)

  • Lee, Ki-Wook;Sung, Chang-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.259-265
    • /
    • 2006
  • As a core area of the new computing paradigm, the Ubiquitous Sensor Network Technology utilizes a wireless sensor networking which can be applied to the Context Information Monitoring System. When the technology is used in a poor user-environment for monitoring purposes, it can cost-effectively gather the context data on real-time basis, analyze the information gathered, effectively response to the user situation, and execute orders to create environmental factors desired by the user. This study structures a system able to monitor information in regards to a user-environment based on wireless-node sensor technology coupled with the Ubiquitous Sensor Network Technology. The proposed system requires a minimal collection of data without continuous monitoring. Monitoring periodically, it can sense the user-environment more efficiently than the existing monitoring technologies based on the wire-communication technology.

  • PDF

Construction Site Scene Understanding: A 2D Image Segmentation and Classification

  • Kim, Hongjo;Park, Sungjae;Ha, Sooji;Kim, Hyoungkwan
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.333-335
    • /
    • 2015
  • A computer vision-based scene recognition algorithm is proposed for monitoring construction sites. The system analyzes images acquired from a surveillance camera to separate regions and classify them as building, ground, and hole. Mean shift image segmentation algorithm is tested for separating meaningful regions of construction site images. The system would benefit current monitoring practices in that information extracted from images could embrace an environmental context.

  • PDF

Review of Internet of Things-Based Artificial Intelligence Analysis Method through Real-Time Indoor Air Quality and Health Effect Monitoring: Focusing on Indoor Air Pollution That Are Harmful to the Respiratory Organ

  • Eunmi Mun;Jaehyuk Cho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Everyone is aware that air and environmental pollutants are harmful to health. Among them, indoor air quality directly affects physical health, such as respiratory rather than outdoor air. However, studies that have examined the correlation between environmental and health information have been conducted with public data targeting large cohorts, and studies with real-time data analysis are insufficient. Therefore, this research explores the research with an indoor air quality monitoring (AQM) system based on developing environmental detection sensors and the internet of things to collect, monitor, and analyze environmental and health data from various data sources in real-time. It explores the usage of wearable devices for health monitoring systems. In addition, the availability of big data and artificial intelligence analysis and prediction has increased, investigating algorithmic studies for accurate prediction of hazardous environments and health impacts. Regarding health effects, techniques to prevent respiratory and related diseases were reviewed.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

A Long-term Monitoring of Water Quality at Chongok Cave (천곡동굴의 수질환경 장기 모니터링)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.13-19
    • /
    • 2013
  • The Chongok karst cave which is located in Donghae-city, has high tourist and educational value due to existence of many doline(sink hole). Whereas this cave is easy to approach for the tourists, because this cave is located near the downtown, a high environmental riskiness such as sewage flowing has been also involved. In study, we observed the variation of water quality with long-term monitoring and investigated the possibility of existence of impact factor to water eco-system and determined the proper long-term monitoring factor among many monitoring criteria. The groundwater quality was maintained in the range of about $14^{\circ}C$ in temperature, over 10mg/l in dissolved oxygen and 7-8 in pH, so the impact factor in water eco-system was not observed. The guide line to make sure of tourist safety was determined to 60mm/d as daily rainfall. The conductivity was suggested to main factor for long-term monitoring main factor and pH/turbidity was suitable for the supplementary factor. For the seasonal variation monitoring, ORP was recommended.

Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia (동아시아 대기질 예보 및 감시를 위한 모델링 기술의 현황과 발전 방향)

  • Park, Rae Seol;Han, Kyung Man;Song, Chul Han;Park, Mi Eun;Lee, So Jin;Hong, Song You;Kim, Jhoon;Woo, Jung-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.407-438
    • /
    • 2013
  • Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.

A Review of Measures against Environmental Impact of Suspended Sediments Generated by Coastal Development Works (연안개발공사로 인한 부유토사의 환경 악영향 저감방안 고찰)

  • Song, Won-Oh;Jin, Jae-Youll;Chae, Jang-Won;Ahn, Hee-Do;Maeng, Jun-Ho;Oh, Jae-Kyung
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.409-416
    • /
    • 2003
  • Coastal development works generally increase the suspended sediment concentration of the ambient water, causing environmental impacts in various manners. The most active measures in three sides have been reviewed for their applicabilities in Korea. Referring to the cases in the USA, the legislation of environmental windows seems to be not proper for Environmentally Sound and Sustainable Developments (ESSD) until sufficient scientific data are obtained to address the individual issues of potential negative impacts. Feedback monitoring can be regarded as the best way for ESSD. Korea also has the basic legal system for the feedback monitoring as well as Environmental Impact Assessments (EIA). However, the frequency, period and parameter of related surveys should be improved for the true ESSD. Moreover, environmental facilities such as environmental dredgers should be widely used for mitigating environmental Impacts caused by coastal development works.

Spread Spectrum Method based Power Line Communication for Plant Monitoring and Control System (전력선 통신을 이용한 plant 감시 제어 시스템)

  • 서민상;성석경;안병규
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.211-215
    • /
    • 1997
  • Localized communication networks for office automation, security monitoring, environmental management of buildings, computer communications, and other applications enjoy every increasing demand. This paper proposes a direct sequence spread spectrum communication system for use in power line data transmission. Advantages of power distribution circuits include reasonably universal coverage and easy access vis a standard wall plug. Disadvantages include limited communication bandwidth, relatively high noise levels, and varying levels of impedance, noise, and attenuation. Spread spectrum signalling provides immunity to narrow-band signal impairments and multiplexing capability. Our prototype power line communication module supports completely physical and data link layers based on the international standard ISO 10368 for reliable high-speed power line communication system. Moreover it provides useful functions to compose a plant monitoring and control system. All the circuits of the communication module are included in one compact circuit. Thus a functional communication system for the power line plant monitoring and control is implemented.

  • PDF

Spatial Reservoir Temperature Monitoring using Thermal Line Sensor (다중온도센서를 통한 입체적인 호소 온도모니터링 평가)

  • Hwang, Ki-Sup;Park, Dong-Soon;Jung, Woo-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1002-1006
    • /
    • 2006
  • Temperature monitoring techniques per depth have been recognized as important information in the reservoir environmental issues. However, old measurement method by single temperature sensor and cable type has demerits not only for its limited measuring location but for its inconvenience of users. In this study, multi-channel temperature monitoring system was introduced and executed experiment for actual application feasibility evaluation. Both type of new techniques such as multi-channel addressable built-in temperature sensor and fiber optic multi sensor were tested in Daechung and Imha reservoir. As a result, it was proved that these kinds of temperature monitoring skills had very good performance and availability for a output of spatial, simultaneous thermal distribution focused on the user's convenience. And these measuring method and thermal data will be useful for providing basic information in a water resources investigation like reservoir stratification and environmental problems.

  • PDF

Satellite Imagery and AI-based Disaster Monitoring and Establishing a Feasible Integrated Near Real-Time Disaster Monitoring System (위성영상-AI 기반 재난모니터링과 실현 가능한 준실시간 통합 재난모니터링 시스템)

  • KIM, Junwoo;KIM, Duk-jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.236-251
    • /
    • 2020
  • As remote sensing technologies are evolving, and more satellites are orbited, the demand for using satellite data for disaster monitoring is rapidly increasing. Although natural and social disasters have been monitored using satellite data, constraints on establishing an integrated satellite-based near real-time disaster monitoring system have not been identified yet, and thus a novel framework for establishing such system remains to be presented. This research identifies constraints on establishing satellite data-based near real-time disaster monitoring systems by devising and testing a new conceptual framework of disaster monitoring, and then presents a feasible disaster monitoring system that relies mainly on acquirable satellite data. Implementing near real-time disaster monitoring by satellite remote sensing is constrained by technological and economic factors, and more significantly, it is also limited by interactions between organisations and policy that hamper timely acquiring appropriate satellite data for the purpose, and institutional factors that are related to satellite data analyses. Such constraints could be eased by employing an integrated computing platform, such as Amazon Web Services(AWS), which enables obtaining, storing and analysing satellite data, and by developing a toolkit by which appropriate satellites'sensors that are required for monitoring specific types of disaster, and their orbits, can be analysed. It is anticipated that the findings of this research could be used as meaningful reference when trying to establishing a satellite-based near real-time disaster monitoring system in any country.