DOI QR코드

DOI QR Code

Satellite Imagery and AI-based Disaster Monitoring and Establishing a Feasible Integrated Near Real-Time Disaster Monitoring System

위성영상-AI 기반 재난모니터링과 실현 가능한 준실시간 통합 재난모니터링 시스템

  • KIM, Junwoo (School of Earth and Environmental Sciences, Seoul National University) ;
  • KIM, Duk-jin (School of Earth and Environmental Sciences, Seoul National University)
  • 김준우 (서울대학교 지구환경과학부) ;
  • 김덕진 (서울대학교 지구환경과학부)
  • Received : 2020.07.30
  • Accepted : 2020.09.09
  • Published : 2020.09.30

Abstract

As remote sensing technologies are evolving, and more satellites are orbited, the demand for using satellite data for disaster monitoring is rapidly increasing. Although natural and social disasters have been monitored using satellite data, constraints on establishing an integrated satellite-based near real-time disaster monitoring system have not been identified yet, and thus a novel framework for establishing such system remains to be presented. This research identifies constraints on establishing satellite data-based near real-time disaster monitoring systems by devising and testing a new conceptual framework of disaster monitoring, and then presents a feasible disaster monitoring system that relies mainly on acquirable satellite data. Implementing near real-time disaster monitoring by satellite remote sensing is constrained by technological and economic factors, and more significantly, it is also limited by interactions between organisations and policy that hamper timely acquiring appropriate satellite data for the purpose, and institutional factors that are related to satellite data analyses. Such constraints could be eased by employing an integrated computing platform, such as Amazon Web Services(AWS), which enables obtaining, storing and analysing satellite data, and by developing a toolkit by which appropriate satellites'sensors that are required for monitoring specific types of disaster, and their orbits, can be analysed. It is anticipated that the findings of this research could be used as meaningful reference when trying to establishing a satellite-based near real-time disaster monitoring system in any country.

원격탐사 기술의 발전과 활용 가능한 위성의 증가로 재난의 예방, 대비, 대응, 복구 등에서 위성영상자료의 활용에 대한 요구가 높아지고 있다. 위성영상은 센서의 특성에 따라 적용 가능한 재난의 모니터링을 위해 활용되고 있지만, 통합된 모니터링 시스템의 구축을 위해 기존 시스템을 평가하고 이를 바탕으로 실현 가능한 준실시간 통합 재난모니터링 시스템 구축을 위한 구체적인 청사진을 제시한 연구는 국내뿐만 아니라 국외에서도 그 사례가 확인되지 않는다. 본 연구는 원격탐사를 통한 재난모니터링의 개념화를 통해 준실시간 재난모니터링 시스템 구축의 장애요인들을 확인하고, 실제로 활용 가능한 영상자료와 실현 가능한 재난모니터링 시스템을 제시하였다. 원격탐사를 통한 준실시간 재난모니터링은 다양한 요인들에 의해 통합시스템의 구축이 제한되며, 시스템 구축을 위한 기술적, 경제적 요인과 함께 위성영상 확보의 적시성을 가로막는 정책적 요인과 일관성 있는 정보생산을 위한 영상분석에 대한 제도적 요인에도 크게 영향을 받는 것으로 나타났다. 이러한 제약들은 AWS(Amazon Web Services)와 같은 위성영상의 저장, 취득, 분석에 활용되는 컴퓨팅 플랫폼과 같은 통합서버의 확보와, 재난의 종류와 상황에 부합하는 활용 가능 위성의 궤도분석을 가능하게 하는 분석도구의 개발에 의해 극복될 수 있을 것으로 판단된다. 본 연구는 이러한 제도적, 경제적, 기술적, 정책적 제약들을 극복할 수 있는 위성영상 기반 통합 재난모니터링 시스템 구축을 위한 프레임워크를 제시하였으며, 재난의 종류와 단계에 따른 AI 기반 위성영상 분석 방법론을 제안하였다. 이러한 결과는 원격탐사와 재난관리 분야에 학술적 시사점을 제공하고, 재난모니터링 분야에 실무적 기여를 할 것으로 판단된다.

Keywords

References

  1. Crawford, S.E. and E. Ostrom. 1995. A grammar of institutions. American Political Science Review 89(3):582-600. https://doi.org/10.2307/2082975
  2. Grainger, A. 2010. Uncertainty in the construction of global knowledge of tropical forests. Progress in Physical Geography 34(6):811-844. https://doi.org/10.1177/0309133310387326
  3. Grainger, A. 2017. Citizen observatories and the new earth observation science. Remote Sensing 9(2):153. https://doi.org/10.3390/rs9020153
  4. Henry, J.B., P. Chastanet, K. Fellah and Y.L. Desnos. 2006. Envisat multi‐polarized ASAR data for flood mapping. International Journal of Remote Sensing 27(10):1921-1929. https://doi.org/10.1080/01431160500486724
  5. Jang, E., Y. Kang, J. Im, D.W. Lee, J. Yoon and S.K. Kim. 2019. Detection and monitoring of forest fires using Himawari-8 geostationary satellite data in South Korea. Remote Sensing 11(3):271. https://doi.org/10.3390/rs11030271
  6. Joyce, K.E., S.E. Belliss, S.V. Samsonov, S.J. McNeill and P.J. Glassey. 2009. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography 33(2):183-207. https://doi.org/10.1177/0309133309339563
  7. Jung, M. 2012. Assessment using remotely sensing imagery: damage detection, mapping and estimation. Journal of the Institute of Electronics Engineers of Korea-CI 49(2):90-95.
  8. Kim, J.Y., D.G. Lee, J.H. Yu, Y.M. Kim, J.P. Kim, S.B. Lee and H.W. Yun. 2016. Development of fundamental technologies for disaster analysis and application based on mid-resolution satellite imagery(I). National Disaster Management Institute, Ulsan. 141pp...
  9. Kim, M., M. Jung and Y. Kim. 2019a. Histogram matching of Sentinel-2 spectral information to enhance Planetscope imagery for effective wildfire damage assessment. Korean Journal of Remote Sensing 35(4):517-534. https://doi.org/10.7780/kjrs.2019.35.4.3
  10. Kim, S., J. Kim and J. Kim. 2019b. National disaster scientific investigation and disaster monitoring using remote sensing and geo-information. Korean Journal of Remote Sensing 35(5-2):763-772.. https://doi.org/10.7780/kjrs.2019.35.5.2.1
  11. Kim, S.K., Y.S. Kim and Y.S. Kim. 2008. International Cooperation Organization for the Common Use of Space Resources in case of Disasters. Current Industrical and Technological Trends in Aerospace 6(1):44-55..
  12. Kim, S.S., J.W. Choi, S.H. Goo and Y.J. Park. 2012. Heavy snowfall disaster response using multiple satellite imagery information. Journal of the Korean Society for Geospatial Information Science 20(4):135-143.. https://doi.org/10.7319/kogsis.2012.20.4.135
  13. Kim, Y. and C. Shim. 2017. Towards an Integrated Drought Monitoring with Multi -satellite Data Products Over Korean Peninsular. Korean journal of remote sensing 33(6):993-1001.
  14. Kim, Y., S.B. Lee, J. Kim and Y. Park. 2017. Disaster management using high resolution optical satellite imagery and case analysis. Journal of The Korean Society of Hazard Mitigation 17(3):117-124. https://doi.org/10.9798/KOSHAM.2017.17.3.117
  15. Kurum, M., 2015. C-band SAR backscatter evaluation of 2008 Gallipoli forest fire. IEEE Geoscience and Remote Sensing Letters 12(5):1091-1095. https://doi.org/10.1109/LGRS.2014.2382716
  16. Lee, J., J. Im, D.H. Cha, H. Park and S. Sim. 2020. Tropical cyclone intensity estimation using multi-dimensional convolutional neural networks from geostationary satellite data. Remote Sensing 12(1):108.
  17. Meyer, F.J., D.B. McAlpin, W. Gong, O. Ajadi, S. Arko, P.W. Webley and J. Dehn. 2015. Integrating SAR and derived products into operational volcano monitoring and decision support systems. ISPRS Journal of Photogrammetry and Remote Sensing 100:106-117. https://doi.org/10.1016/j.isprsjprs.2014.05.009
  18. National Disaster Management Research Institute. 2014a. R&D for development of disaster detecting satellite sensor and operation of experiment building. National Disaster Management Research Institute, Seoul. 425pp.
  19. National Disaster Management Research Institute. 2014b. Application plan research of national satellite images for disaster management, National Disaster Management Research Institute, Seoul. 210pp.
  20. Peltier, A., M. Bianchi, E. Kaminski, J.C. Komorowski, A. Rucci. and T. Staudacher. 2010. PSInSAR as a new tool to monitor pre‐eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise. Geophysical Research Letters 37:L12301. https://doi.org/10.1029/2010GL043846
  21. Schott, J.R. 1997. Remote sensing: the image chain approach. Oxford University Press, New York, USA. 688pp.
  22. Shim, J.H., W.J. Choi and K.H. Jin. 2006. Application of natural disaster management using geo-spatial image information. National Institute For Disaster Prevention, Seoul. 150pp.
  23. Son, A. and J. Kim. 2019. The analysis of flood in an ungauged watershed using remotely sensed and geospatial datasets (I) - focus on estimation of flood discharge. Korean Journal of Remote Sensing 35(5-2):781-796.. https://doi.org/10.7780/kjrs.2019.35.5.2.3
  24. Song, J., D.J. Kim and K.M. Kang. 2020. Automated procurement of training data for machine learning algorithm on ship detection using AIS information. Remote Sensing 12(9):1443. https://doi.org/10.3390/rs12091443
  25. Swain, R. and B. Sahoo. 2017. Improving river water quality monitoring using satellite data products and a genetic algorithm processing approach. Sustainability of Water Quality and Ecology 9:88-114. https://doi.org/10.1016/j.swaqe.2017.09.001
  26. Tsai, F., J.H. Hwang, L.C. Chen and T.H. Lin. 2010. Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Natural Hazards and Earth System Sciences 10(10):2179. https://doi.org/10.5194/nhess-10-2179-2010
  27. Woo, H-B., Y.D., Joo, M-J. Choi and S-J. Jang. 2015. Analysis about technology requirements for development of disaster detecting satellite sensor. The Journal of the Korea Institute of Electronic Communication Sciences 10(11):1205-1216.. https://doi.org/10.13067/JKIECS.2015.10.11.1205
  28. Yang, H., J-M. Ryu, H-J. Han, J-H. Ryu and Y-J. Park. 2012. Ocean Disaster Detection System(OD2S) using Geostationary Ocean Color Imager(GOCI). Journal of Information Technology Services 11:177-189..
  29. Yu, J.H. and H-W. Yun. 2019. Development of continuous ground deformation monitoring system using Sentinel satellite in the Korea. Korean Journal of Remote Sensing 35(5-2):773-779.. https://doi.org/10.7780/kjrs.2019.35.5.2.2
  30. Zhang, Y., Y. Li and H. Lin. 2014. Oil-spill pollution remote sensing by synthetic aperture radar. Advanced Geoscience Remote Sensing. pp.27-50.