• 제목/요약/키워드: Environmental Image

검색결과 1,951건 처리시간 0.028초

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF

수중에서의 특징점 매칭을 위한 CNN기반 Opti-Acoustic변환 (CNN-based Opti-Acoustic Transformation for Underwater Feature Matching)

  • 장혜수;이영준;김기섭;김아영
    • 로봇학회논문지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In this paper, we introduce the methodology that utilizes deep learning-based front-end to enhance underwater feature matching. Both optical camera and sonar are widely applicable sensors in underwater research, however, each sensor has its own weaknesses, such as light condition and turbidity for the optic camera, and noise for sonar. To overcome the problems, we proposed the opti-acoustic transformation method. Since feature detection in sonar image is challenging, we converted the sonar image to an optic style image. Maintaining the main contents in the sonar image, CNN-based style transfer method changed the style of the image that facilitates feature detection. Finally, we verified our result using cosine similarity comparison and feature matching against the original optic image.

A NEW LANDSAT IMAGE CO-REGISTRATION AND OUTLIER REMOVAL TECHNIQUES

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.594-597
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a time-consuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

  • PDF

A New Landsat Image Co-Registration and Outlier Removal Techniques

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.439-443
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a timeconsuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

환경교육 영상매체 활용 수업이 환경 감수성에 미치는 영향 (The Effect of Using Image Media for Environmental Education on Students' Environmental Sensitivity)

  • 최성봉
    • 한국환경과학회지
    • /
    • 제17권10호
    • /
    • pp.1183-1193
    • /
    • 2008
  • Today, environmental pollution and destruction due to the industrialization of our modem society have been the global issues. Although now we can lead affluent lives through science technologies and economic development, these environmental problems have resulted in striking the harmonious balance between human beings and nature and threatened human lives with abnormal weather caused by the global warming, destruction of the ozone layer, and El Nino phenomenon, acid rain, decrease in species diversity, movement of hazardous materials, and harmful waste increase. We are aware of the importance of environmental education, but in reality, it seems impossible to implement appropriate environmental education on account of our educational climate which exclusively focuses on the entrance examination. However, environmental education is the most ultimate solution for those problems in that only when students understand our environment fully and grow habits to protect it through environmental education, the present environmental problems can be solved and more serious problems that can be resulted in the future can possibly be prevented. Thus, this study has examined the effect of using image media in the environment subject on students' environmental sensitivity. According to the results, it was shown that it had positive effects on 'sensitivity of environment', 'attitudes towards environment', and 'environmental affinitive behaviors'.

기업이미지 강화를 위한 환경디자인의 브랜드화에 관한 연구 (A Study on the Environmental Design Brand for the Vitality of Corporate Image)

  • 남경숙
    • 한국실내디자인학회논문집
    • /
    • 제41호
    • /
    • pp.55-62
    • /
    • 2003
  • The purpose of this these is to study on the environmental design brand for the vitality of corporate image. To achieve the purpose of this study, the methods and contents are as follows: 1. Conforming the concept of the corporate environmental design brand. For that explaining the definition and the tradition of brand and the meaning of corporate identity and corporate environmental design system. 2. Explaining the factors of the corporate environmental design. For that 1) explaining the expression of the corporate identity 2) Explaining the expressive factors of the corporate identity. For that, studying the style and the theme. 3. Studying the cases of the corporate environmental design brand. By these methods and contents, we will study environmental design brand for the vitality of corporate image.

CAR DETECTION IN COLOR AERIAL IMAGE USING IMAGE OBJECT SEGMENTATION APPROACH

  • Lee, Jung-Bin;Kim, Jong-Hong;Kim, Jin-Woo;Heo, Joon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.260-262
    • /
    • 2006
  • One of future remote sensing techniques for transportation application is vehicle detection from the space, which could be the basis of measuring traffic volume and recognizing traffic condition in the future. This paper introduces an approach to vehicle detection using image object segmentation approach. The object-oriented image processing is particularly beneficial to high-resolution image classification of urban area, which suffers from noisy components in general. The project site was Dae-Jeon metropolitan area and a set of true color aerial images at 10cm resolution was used for the test. Authors investigated a variety of parameters such as scale, color, and shape and produced a customized solution for vehicle detection, which is based on a knowledge-based hierarchical model in the environment of eCognition. The highest tumbling block of the vehicle detection in the given data sets was to discriminate vehicles in dark color from new black asphalt pavement. Except for the cases, the overall accuracy was over 90%.

  • PDF

Characteristics of Multi-Spatial Resolution Satellite Images for the Extraction of Urban Environmental Information

  • Seo, Dong-Jo;Park, Chong-Hwa;Tateishi, Ryutaro
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.218-224
    • /
    • 1998
  • The coefficients of variation obtained from three typical vegetation indices of eight levels of multi-spatial resolution images in urban areas were employed to identify the optimum spatial resolution in terms of maintaining information quality. These multi-spatial resolution images were prepared by degrading 1 meter simulated, 16 meter ADEOS/AVNIR, and 30 meter Landsat-TM images. Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index (PVI) and Soil Adjusted Ratio Vegetation Index (SARVI) were applied to reduce data redundancy and compare the characteristics of multi-spatial resolution image of vegetation indices. The threshold point on the curve of the coefficient of variation was defined as the optimum resolution level for the analysis with multi-spatial resolution image sets. Also, the results from the image segmentation approach of region growing to extract man-made features were compared with these multi-spatial resolution image sets.

  • PDF

GPU 가속화를 통한 이미지 특징점 기반 RGB-D 3차원 SLAM (Image Feature-Based Real-Time RGB-D 3D SLAM with GPU Acceleration)

  • 이동화;김형진;명현
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.457-461
    • /
    • 2013
  • This paper proposes an image feature-based real-time RGB-D (Red-Green-Blue Depth) 3D SLAM (Simultaneous Localization and Mapping) system. RGB-D data from Kinect style sensors contain a 2D image and per-pixel depth information. 6-DOF (Degree-of-Freedom) visual odometry is obtained through the 3D-RANSAC (RANdom SAmple Consensus) algorithm with 2D image features and depth data. For speed up extraction of features, parallel computation is performed with GPU acceleration. After a feature manager detects a loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and builds a 3D point cloud based map.

A STUDY ON THE ANALYSIS OF DAMAGE ESTIMATION USING AERIAL IMAGES FOR FUTURE KOMPSAT-3 APLLICATION

  • Yun, Kong-Hyun;Sohn, Hong-Gyoo;Cho, Hyoung-Sig
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.515-517
    • /
    • 2007
  • In this study we attempted to estimate damage scope such as bridges destruction, farmland deformation, forest damage, etc occurred by typhoon using two digital aerial images for future high-resolution Kompsat-3 applications. The process procedures are followings: First, image registration between time-different aerial images was implemented. In this process one image was geometrically corrected by image-to-image registration. Second, image classification was done according to 4 classes. Finally through the comparison of classified two images the area of damage by flood and storm was approximately calculated. These results showed that it is possible to estimate the damage scale relatively rapidly using high-resolution images.

  • PDF