• Title/Summary/Keyword: Environment-Friendly Materials

Search Result 714, Processing Time 0.028 seconds

A Study on the Absorption Characteristics of Soil Block and Soil Plaster as Eco-Friendly Building Materials (친환경 건축재료로서의 흙벽돌과 흙미장의 흡음 특성에 관한 연구)

  • Hwang, Seong Il;Chu, Mun Ki;Hwang, hey joo;Oh, yang ki
    • KIEAE Journal
    • /
    • v.7 no.3
    • /
    • pp.57-62
    • /
    • 2007
  • Most of current building materials are made of organic compounds or at least made with chemical treatments. Though easy to use and comparatively pay less, those materials are generally not enviornmentally sound. VOC is one of harmful effects. On contrary, natural materials such as soil are usually eco-friendly, and environmentally sustainable as well if not treated in autoclaves. Acoustica materials made of such environmentally sound and sustainable could be widely used. It is aimed to prove that soil based materials could be effectively used in acoustical fields rather than the other usual materials. Experiments with various types of soil blocks and soil plaster were performed. It is proved that the soil plaster has better apsorption features than cement plaster. Soil blocks have higher absorption cofficients than soil plaster, due to the thickness, and the absorption characteristics can be controlled by the design of the blocks.

Thermoelectric Properties of PbTe Prepared by Spark Plasma Sintering of Nano Powders (나노 분말을 Spark Plasma 소결해 제조한 PbTe의 열전 특성)

  • Jun, Eun-Young;Kim, Ho-Young;Kim, Cham;Oh, Kyung-Sik;Chung, Tai-Joo
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.384-389
    • /
    • 2018
  • Nanoparticles of PbTe are prepared via chemical reaction of the equimolar aqueous solutions of $Pb(CH_3COO)_2$ and Te at $120^{\circ}C$. The size of the obtained particles is 100 nm after calcination in a hydrogen atmosphere. Dense specimens for the thermoelectric characterization are produced by spark plasma sintering of prepared powders at $400^{\circ}C$ to $500^{\circ}C$ under 80 MPa for 5 min. The relative densities of the prepared specimens reach approximately 97% and are identified as cubic based on X-ray diffraction analyses. The thermoelectric properties are evaluated between $100^{\circ}C$ and $300^{\circ}C$ via electrical conductivity, Seebeck coefficient, and thermal conductivity. Compared with PbTe ingot, the reduction of the thermal conductivities by more than 30% is verified via phonon scattering at the grain boundaries, which thus contributes to the increase in the figure of merit.

A study on the functional and environmentally friendly concrete (친환경 기능성 콘크리트에 관한 연구 방안)

  • Baek, Jong-Myeong;Seo, Moon-Seog;Lee, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.565-573
    • /
    • 2009
  • Even in case of new materials, materials that are not only harmless for the current global environment but also have high-performance and high-function are sought-after in consideration of the global environmental problems. Moreover, in construction areas where a large amount of cement and concrete are used, the establishment of the recycling technology or transformation into resources and energy materials are being put in place. And also, in a situation where the slow and relaxed city and rural life have a high priority, the need for cement and concrete as environmentally friendly new materials that best suit the emotions in human beings is on the rise and a new way to make good use of cement and concrete as new materials in construction technology should be sought. The recently introduced functional and environmentally friendly concrete is aimed at enhancing health through the adjustments of the body biorhythm using far-infrared. Minerals that contain a great amount of the elements with the frequent occurrence of the infrared among earth minerals and concrete are mixed to use structures or finishing materials, which will tackle the issues of smells, mold and corrosion.

  • PDF

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery (리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석)

  • Jeon, Min-Kyu;Lee, Eun-Song;Yoon, Hong-Sik;Keel, Sang-In;Park, Hyun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

Trends and Perspective for Eco-friendly Composites for Next-generation Automobiles (차세대 자동차용 친환경 복합재료의 동향 및 전망)

  • Eunyoung Oh;Marcela Maria Godoy Zuniga;Jonghwan Suhr
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • As global issues and interest in the environment increase, the transition to eco-friendly materials is accelerating in the automobile industry. In the automotive industry, eco-friendly composite materials are mainly used in various interior and exterior components, reducing the reliance on traditional petroleum-based materials. In particular, natural fiber composites help reduce fuel consumption and greenhouse gas emissions by making vehicles lighter. Additionally, they boast superior thermal properties and durability compared to non-recyclable composite materials, making them suitable for automotive interior parts. Furthermore, reduced production costs and sustainability are key advantages of natural fiber composites. The eco-friendly composites market is expected to grow to $86.43 billion at a CAGR of 15.3% from 2022 to 2030, and the natural fiber composites market is predicted to grow at a CAGR of 5.3% from 2023 to 2028 to $424 million. In this review paper, we explore research trends in nextgeneration natural fiber composite materials for automobiles and their application in the actual automobile industry.

Noise Reduction Method for Environment Friendly Housing Estate (신도시 친환경 주거단지조성을 위한 소음저감 대책방안)

  • 김흥식;주문기;주시웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.535-541
    • /
    • 2004
  • For housing estate of a new administrative capital city, Noise reduction method is a important design factor. As measuring a noise level of traffic noise according to separation from road, it can be created a quite housing estate. Analyzing of merits and demerits in sound barrier walls and tunnels can be proposed environment friendly soundproofing facilities. Number of measurement was performed to know what kind of layout of housing estate is good for noise reduction. Through this measurement, ㄷ shaped layout or parallel layout has the advantage of sound insulation rather than right angled layout. In this case (ㄷ shaped layout or parallel layout) buildings neighboring to the road should be designed to insulate sound. Evergreen trees should be planted between housing estate and road more than 30m (at least 7~8m) in order to reduce noise and have masking effects. If broad-leaved trees are planted more than 30m, approximately 10dB noise is reduced and 2~4dB if 7~8m. Roads in the estate should be designed considering pedestrians first, and special roads for moving and ambulance should be designed as skew road, if possible. The result shows that 15$^{\circ}$-sloped‘S’road reduces 1~2dB noise and 30$^{\circ}$-sloped road reduces 4~7dB. If noise barrier is inevitably installed, it should be designed to go well wit neighboring environment so as to install Environment Friendly Noise Barrier using materials and trees including wood and soil. Through this study the results are used to guideline for construction of environment friendly housing estate

  • PDF

Properties of compressive strength of Ocher (황토의 압축강도 특성에 관한 연구)

  • Nguyen, Ninh-Thuy;Chae, Chul-Ho;Lee, Seung-Gul;Hoang, Kieu-Nga;Kwon, Hyug-Moon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.417-420
    • /
    • 2005
  • Construction industry is one of the fastest growing sectors in the world. Rapid construction activity and growing demand of houses have lead to the short fall of traditional building materials, such as burnt bricks. It is better to replace the traditional materials by the good quality of building materials with the low cost and durable environment friendly building materials. In order to satisfy that purpose, the researchers need to vary of new and innovative building materials. This paper shows the properties of compressive strength of ocher for unburnt bricks.

  • PDF

Study on the Environmental Factor Analysis of Interior Material using Hanji (한지 소재 내장재의 친환경적 요소 분석 연구)

  • Kim, Ji-Soo;Lee, Yu-Ra;Lim, Hyun-A
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • Hanji has known for its high qualities for more than thousand years. Hanji is stronger, and has better durability, air permeability, flexibility, thermal insulation, soundproofs and UV absorbability. Therefore, developing industrial interior finishing materials using Hanji is replaced with the PVC (Poly-Vinyl Chloride) materials instead, it will be a new environment-friendly material and positively represents Korean brand marketing. The industrial inter-construction material is discomposed by heat or light because of material characteristics. As a result, it emits a lot of noxious substances. Hanji is essentially a neutral paper since it does not rely on any acidic chemicals of artificial bleaching methods. Hanji is also known as the living paper because of its close relation to nature. Therefore, I would like to suggest that Hanji made from alternative material as a chicken fiber. It will be a non-polluting interior finishing materials by making use of Hanji to a taste of Korean culture in the green industry around the world. Rather than PVC used commonly in construction material, kitchen and office furniture, interior materials in the subway, trains, or other vessels, credit cards, and ID cards, I created an interior construction material by using patented Hanji. This will be increased the value of usefulness in the environment-friendly green industry instead of PVC.

  • PDF

Suppressive Effects of Homemade Environment-friendly Materials on Alternaria Blight and Anthracnose of Ginseng (친환경자재를 이용한 인삼 점무늬병과 탄저병의 발병억제효과)

  • Lim, Jin-Soo;Mo, Hwang-Sung;Lee, Eung-Ho;Park, Kee-Choon;Chung, Chan-Moon
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.705-718
    • /
    • 2014
  • This study was performed to evaluate the suppressive effects of organic fungicides made using environment-friendly materials on leaf spot disease and anthracnose that infect ginseng. Anthracnose (Colletotrichum gloeosporioides) and leaf spot disease (Alternaria panax) are principal diseases that decrease the yield of ginseng by defoliation before root enlargement. Fermented eggs and oyster shells, water extract of green tea and ethanol extract of red ginseng dregs were significantly effective in suppressing leaf spot disease. Fermented crab and shrimp shells and fermented motherwort were also effective in suppressing the recurrence of ginseng anthracnose. The preventive effects of these environment-friendly materials were definitely superior to the therapeutic effects. Therefore, these materials could be used as alternatives to chemical pesticides, which can not be applied in organic ginseng cultivation field. These organic fungicides need to be applied before the incidence of ginseng anthracnose in order to maximize their suppressive effects.

Development of the Optimal Media for Mycelial Culture of Pleurotus eryngii using the Hot-water Extract of Raw Materials (천연배지 열수추출물을 이용한 큰느타리버섯 균사배양 적합 배지 개발)

  • Kim, Min-Keun;Ryu, Jae-San;Lee, Young-Han;Lee, Seong-Tae;Heo, Jae-Young;Kwon, Jin-Hyeuk
    • The Korean Journal of Mycology
    • /
    • v.40 no.1
    • /
    • pp.49-53
    • /
    • 2012
  • Hot-water extracted natural media were made from raw materials for mycelial culture of Pleurotus eryngii. Poplar sawdust, wheat bran and rice bran were used as substrates for hot water extraction. The mixed substrates of poplar sawdust, wheat bran, and rice bran with 50 : 20 : 30 (v/v/v, PWR523) and 50 : 30 : 20 (v/v/v, PWR532) were optimal for mycelial growth of P. eryngii, respectively. The hot-water extracted natural media from PWR523 and PWR532 showed a rapid mycelial growth and spawn running compared to PDA. There was no significant difference in mushroom yield when the mycelium grown on the hot-water extracted natural media was used as the inoculum source for producing fruit body.