DOI QR코드

DOI QR Code

Thermoelectric Properties of PbTe Prepared by Spark Plasma Sintering of Nano Powders

나노 분말을 Spark Plasma 소결해 제조한 PbTe의 열전 특성

  • Jun, Eun-Young (L&F Co. ltd.) ;
  • Kim, Ho-Young (Magnet Controlled Materials Research Group, DGIST) ;
  • Kim, Cham (Magnet Controlled Materials Research Group, DGIST) ;
  • Oh, Kyung-Sik (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University) ;
  • Chung, Tai-Joo (School of Advanced Materials Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University)
  • 전은영 (엘앤에프) ;
  • 김호영 ;
  • 김참 ;
  • 오경식 (국립안동대학교 신소재공학부, 친환경신소재산업지원센터) ;
  • 정태주 (국립안동대학교 신소재공학부, 친환경신소재산업지원센터)
  • Received : 2018.09.28
  • Accepted : 2018.10.11
  • Published : 2018.10.28

Abstract

Nanoparticles of PbTe are prepared via chemical reaction of the equimolar aqueous solutions of $Pb(CH_3COO)_2$ and Te at $120^{\circ}C$. The size of the obtained particles is 100 nm after calcination in a hydrogen atmosphere. Dense specimens for the thermoelectric characterization are produced by spark plasma sintering of prepared powders at $400^{\circ}C$ to $500^{\circ}C$ under 80 MPa for 5 min. The relative densities of the prepared specimens reach approximately 97% and are identified as cubic based on X-ray diffraction analyses. The thermoelectric properties are evaluated between $100^{\circ}C$ and $300^{\circ}C$ via electrical conductivity, Seebeck coefficient, and thermal conductivity. Compared with PbTe ingot, the reduction of the thermal conductivities by more than 30% is verified via phonon scattering at the grain boundaries, which thus contributes to the increase in the figure of merit.

Keywords

References

  1. H. B. Callen: Thermodynamics and an Introduction to Thermostatics, Wiley, New York, (1985).
  2. Z. Dughaish: Physica B, 322 (2002) 205. https://doi.org/10.1016/S0921-4526(02)01187-0
  3. L. D. Hicks and M.S. Dresselhaus: Phys. Rev. B, 47 (1993) 16631. https://doi.org/10.1103/PhysRevB.47.16631
  4. H. J. Goldsmid: Recent Trends in Thermoelectric Materials Research I, Vol. 69, T.M.Tritt, pp.1-5, Academic Press, New York (1964).
  5. G. S. Nolas, J. Sharp, H. J. Goldsmid: Thermoelectrics, pp. 2-5, Springer-Verlag, Berlin (2001).
  6. T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge: Science, 297 (2002) 2229. https://doi.org/10.1126/science.1072886
  7. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis : Science, 303 (2004) 818. https://doi.org/10.1126/science.1092963
  8. J. H. Chae, K. H. Kim, Y. H. Choa, J. Matsushita, J. W. Yoon and K.B. Shim: J. Alloy. Compd., 413 (2006) 259. https://doi.org/10.1016/j.jallcom.2005.05.049
  9. G. Nimtz and B. Schlicht: Narrow-Gap Lead Salts. Springer, Berlin (1983).
  10. R. Allgaier and W. Scanlon: Phys. Rev., 111 (1958) 1029. https://doi.org/10.1103/PhysRev.111.1029
  11. Y. Q. Cao, T. J. Zhu and X. B. Zhao: J. Phys. D: Appl. Phys., 42 (2009) 015406. https://doi.org/10.1088/0022-3727/42/1/015406
  12. M.S Dresselhaus, Y. M. Lin, S. B. Cronin, O. Rabin, M. R. Black, G. Dresselhaus, and T. Koga: Semiconduct. Semimet., 71 (2001) 1.
  13. R. Venkatasubramanian: Semiconduct. Semimet., 71 (2001) 175.
  14. C. H. Kuo, M. S. Jeng, J. R. Ku, S. K. Wu, Y. W. Chou and C. S. Hwang: J. Electron. Mater. 38 (2009) 1956. https://doi.org/10.1007/s11664-009-0677-7