Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.
한국 남동해역 내대륙붕 이토대(mudbelt) 퇴적물의 물리적 성질을 연구하기 위하여 이토대지역 총 14개 정점에서 피스톤시추기를 이용하여 해저 퇴적물을 채취하였다. 시추퇴적물은 실험실에서 각 코어별 일정한 깊이로 퇴적물의 조직, 물리적 성질 및 음파전달속도를 측정하였다. 표층퇴적물의 조직 중 평균입도는 연구지역의 남쪽지역인 울산 앞바다에서 북쪽으로 갈수록 등수심선과 거의 평행하게 감소하는 경향을 보인다. 물리적 성질인 습윤전밀도와 공극율 그라고 속도 등의 분포 형태도 평균입도 분포와 유사하게 변화하는 경향을 뚜렷하게 보여주어 퇴적물의 입도가 물성에 큰 영향을 끼치고 있음을 알 수 있다. 이러한 퇴적물의 조직 및 물성의 분포특성은 낙동강 및 한반도 주변에서 공급된 세립질 퇴직물이 연안류나 대마난류 등에 의해 해안선을 따라 북동쪽으로 이동하면서 분급화되어 북쪽으로 갈수록 점진적으로 조립질에서 세립질로 변해가는 퇴적과정을 보여주는 것으로 해석된다. 퇴적물의 조직, 물성 및 속도등의 수직적인 변화도 최적후의 다짐작용보다는 퇴적물의 조직에 의해 영향을 받고 있는 것으로 나타났다. 조직 및 물성간의 상관관계를 보면 비교모델로 시용한 북태평양 대륙붕 및 사면퇴적물은 물론 남해대륙붕 퇴적물과 전반적인 경향은 유사하나 절대값의 차이가 있다. 즉 같은 조직 및 물성값에 대해 본 연구지역의 속도가 더 높다. 이러한 결과는 퇴적물의 기원에 기인한 광물조성 및 퇴적환경의 차이와 본 연구지역에 비교적 흔한 가스함유퇴적층의 존재로 인한 가스의 방출로 퇴적물의 공극비가 감소하여 높은 속도감을 보이는 것으로 사료된다.
황해 남동부 니질대(mudbelt)퇴적물의 물리적 성질을 연구하기 위하여 총 10개 정점에서 해저 퇴적물을 채취하였다. 그 자료는 동해(남동 내대륙붕)및 남해니질대 자료와 비교하였다. 시추퇴적물들의 대부분은 실트질이 우세하며, 그 외 사질니 및 니로 구성되어 있다. 연구지역 표층퇴적물은 주로 금강에서 유입된 세립질 퇴적물이 연안류에 의해 남쪽으로 이동하여 분급화되면서 평균입도, 속도 및 습윤전밀도값은 점진적으로 감소하고 공극율은 증가하는 경향을 잘 보인다. 평균입도가 물성 및 음파전달속도를 결정하는데 주요한 변수로 나타났고, 수직적인 변화도 다져 짐작용이나 고화작용에 의한 영향보다는 퇴적물 조직 (주로 실트함량)의 변화 경향을 잘 반영하는 것으로 나타났다. 조직 및 물성간의 상관관계를 보면 비교모델로 사용한 남해 및 동해역 퇴적물과 가벼운 편차는 있으나 전반적인 경향은 유사하다 다만 가벼운 편차가 나타나는 것은 실트함량의 차이, 퇴적환경, 광물조성의 차이 및 가스의 함량 등 복합적인 결과로 보인다.
유가의 급등과 화석 연료에 의한 온난화 현상은 재생 가능한 대체 연료에 대한 필요성이 요구되었다. 수송용 바이오 연료를 비교하였을 때 에탄올보다 높은 알코올 경우 휘발유와 비슷한 장점을 갖는데 그 이유는 높은 에너지 밀도와 낮은 흡습성을 갖기 때문이다. 이러한 이유로 미생물의 발효는 지속적인 에너지를 얻을 수 있는 잠재적 생산자라 할 수 있다. 본 연구에서는 생물학적으로 생산되는 알코올 성분에 대하여 두 종의 세균과 한종의 효모인 Escherichia coli와 Clostridium acetobutylicum 그리고 Saccharomyces cerevisiae를 이용하여 바이오 알코올에 대한 세포 성장 정도와 함께 미생물내에 스트레스 반응 유전자들의 분석을 실시하였다. 분석한 알코올은 에탄올과 부탄올이며, 이들의 농도별 세균의 성장속도와 산화적 손상에 민감하게 반응하는 katG 유전자, 생물막 손상에 민감하게 반응하는 fabA 유전자, 단백질 손상에 민감하게 반응하는 grpE 유전자, 유전자 손상에 민감하게 반응하는 recA 유전자의 반응여부를 분석하였다. 그 결과, 에탄올과 부탄올 중 부탄올의 세포 독성이 더 높게 관찰되었으며, 부탄올의 경우 생물막 손상을 유발하는 세포내 독성효과를 지니고 있음을 확인하였다.
Cities will soon host two third of the population worldwide, and already today 80% of the world energy is used in the 20 largest cities. Urban areas create 80% of the greenhouse gas emission, so we should take care that urban areas are smart and sustainable as implementations have especially here the greatest impact. Smart Cities (SC) or Smart Sustainable Cities (SSC) are the actual concepts that describe methodologies how cities can handle the high density of citizens, efficiency of energy use, better quality of life indicators, high attractiveness for foreign investments, high attractiveness for people from abroad and many other critical improvements in a shifting environment. But if we talk about Entrepreneurship Ecosystem and Innovation, we do not see a lot of literature covering this topic within those SC/SSC concepts. It seems that 'Smart' implies that all is embedded, or isn't it properly covered as brick stone of SC/SSC concepts, as they are handled in another 'responsibility silo', meaning that the policy implementation of a Science and Technology Park (STP) is handled in another governing body than SC/SSC developments. If this is true, we will obviously miss a lot of synergy effects and economies of scale effects. Effects that we could have in case we stop the siloed approaches of STPs by following a more holistic concept of a Smart Sustainable City, covering also a continuous flow of innovation into the city, without necessarily always depend on large corporate SSC solutions. We try to argue that every SSC should integrate SP/STP concepts or better their features and services into their methodology. The very limited interconnectivity between these concepts within the governance models limits opportunities and performance in both systems. Redesigning the architecture of the governance models and accepting that we have to design a system-of-systems would support the possible technology flow for smart city technologies, it could support testbed functionalities and the public-private partnership approach with embedded business models. The challenge is of course in complex governance and integration, as we often face siloed approaches. But real SSC are smart as they are connecting all those unconnected siloes of stakeholders and technologies that are not yet interoperable. We should not necessarily follow anymore old greenfield approaches neither in SSCs nor in SP and STP concepts from the '80s that don't fit anymore, being replaced by holistic sustainability concepts that we have to implement in any new or revised SSC concepts. There are new demands for each SP/STP being in or close to an SC/SCC as they have a continuous demand for feeding the technology base and the application layer and should also act as testbeds. In our understanding, a big part of STP inputs and outputs are still needed, but in a revised and extended format. We know that most of the SC/STP studies claim the impact is still far from understood and often debated, therefore we must transform the concepts where SC/STPs are not own 'cities', but where they act as technology source and testbed for industry and new SSC business models, being part of the SC/STP concept and governance from the beginning.
Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.
고상 반응법을 이용하여 $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ 분말을 합성하고 소결하여 혼합전도성 분리막을 제조하였다. 제조된 분리막들은 페롭스카이트 단일상 결정구조를 나타내었으며, $95\%$, 이상의 상대밀도를 나타내었다. 산소이온 변환 능력을 향상시키기 위해 $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$의 양 표면에 $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ paste를 스크린 프린팅 방법으로 코팅한 결과, 코팅되지 않은 분리막에 비해 산소투과 유속이 크게 증가하여 $950^{\circ}C,\; {\Delta}P_{o_2}=0.21 atm$에서 약 $0.5ml/min{\cdot}cm^2$의 값을 나타내었다. 이러한 산소투과 유속은 표면 코팅층이 다공성일수록, $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$의 결정립 크기가 증가할수록 증가하는 경향을 나타내었다. 제조된 디스크 형상의 소결체를 이용하여 $950^{\circ}C$에서 메탄부분산화반응을 행한 결과 $40\%$ 이상의 메탄전환율과 합성가스의 수율을 얻을 수 있었으며, CO의 선택도는 $100\%$를 나타내었다 또한, $950^{\circ}C$의 메탄분위기에서 600시간의 장기부분산화반응을 통해 상의 안정성을 확인하였다.
1974년(年) 천연(天然)소나무집단(集團)에 대한 유전적변이(遺傳的變異)를 분석(分析)하고져 먼저 경북(慶北) 청송군(靑松郡) 소재(所在) 주왕산(周王山)소나무림(林), 충남(忠南) 서산군(瑞山郡) 소재(所在) 안면도(安眠島) 소나무림(林), 그리고 강원도(江原道) 평창군(平昌郡) 소재(所在) 소나무림(林)을 대상(對象)으로하여 각(各) 집단(集團)에서 되도록 소면적(小面積)의 범위내(範圍內)에 서있는 소나무 개체(個體)를 각(各) 20주(株)씩 총 60주(株)를 택(擇)하여 그 모수(母樹)에 대한 형태학적(形態學的) 특성(特性)등을 조사측정(調査測定)하고 집단간(集團間)에 보이는 차이(差異) 그리고 한 집단내(集團內)에 있는 각개체수목(各個體樹木)의 형질(形質)을 조사보고(調査報告)한바 있다(제일보고문(第一報論文). 1974년(年) 가을에 가계별(家系別)로 종자(種字)을 채취(採取)하여서 가계별(家系別) 및 산지별(産地別)의 차이(差異)를 분석(分析)하고 동시(同時)에 그 종자(種字)를 파종하여서 1-0묘(苗) 및 1-1묘(苗)를 대상(對象)으로 생장인자(生長因子)에 대한 측정(測定)을 하고 그 유전력(遺傳力)을 계산(計算)해 보았다. 그밖에 엽록소함량(葉綠素含量) 또는 monoterpene등의 함량(含量)의 차이(差異)를 분석(分析)해 보았다. 종자(種字)의 형태학적(形態學的) 특성(特性)에 있어서는 집단간(集團間) 또 가계간(家系間)에 유의차(有意差)를 보이지 않는 것도 있었으나 대체(大體)로 유의차(有意差)가 인정(認定)되었다. 그리고 각형질간(各形質間)의 상관(相關)을 보았는데 구과폭(毬果幅)과 종자익(種字翼)의 폭(幅), 구과장(毬果長)과 종자익(種字翼)의 길이간(間), 그리고 구과(毬果) 생중량(生重量)과 종자중량간(種字重量間)에는 정(正)의 상관(相關)이 보였다. 묘고(苗高)와 근원경(根元徑)의 성장(成長)에 있어서는 가계간(家系間) 그리고 집단간(集團間)에 차이(差異)가 인정되었다. 묘고(苗高)의 유전력(遺傳力)은 집단(集團)의 평균치(平均値)를 가지고 분석(分析)하였다. 즉 집단(集團)에 관계(關係)되는 분산(分散)을 유전분산(遺傳分散)으로 보고서 유전력(遺傳力)을 계산(計算)해 보았는데 1-0묘(苗)의 묘고(苗高)에서는 0.29, 1-1묘(苗)에서는 0.14가 그리고 근원경(根元徑)에 있어서는 1-0묘(苗)는 0.15, 1-1묘(苗)에서는 0.06이였다. 기공열수(氣孔列數)에 있어서는 집단간차이(集團間差異)가 있었으나 거치밀도(鋸齒密度)에는 차이(差異)가 없었다. 침엽(針葉)의 특성(特性)에 관(關)해서는 모수(母樹)와 차대간(次代間)에 상관(相關)이 없었다. 엽록소함량(葉綠素含量)은 집단간차이(集團間差異)는 보였으나 가계간차이(家系間差異)는 없었다. monoterpene의 성분(成分)에 있어서는 myrcene과 ${\beta}$-phellandrene의 함량(含量)으로 집단차(集團差)를 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.