• Title/Summary/Keyword: Envelop insulation

Search Result 3, Processing Time 0.015 seconds

A Study on the Envelop to Improve Interior Environment Performance of High-rise Residential Building (초고층 주상복합 건물의 실내 환경 성능 향상을 위한 외피부 개선방향에 관한 연구)

  • Park, Sang-Hoon;Cho, Ga-Young;Lee, Sun-Woo;Jo, Jae-Hun;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.306-309
    • /
    • 2006
  • The architectural difference between the existing residence and high-rise residential building causes changes on environmental conditions such as ventilation and insulation. The object of this study is to present the improvement on envelop of high-rise residential buildings to reduce heating and cooling load. To improve the environmental performance of envelop, it is necessary to modify envelop vent system and ensure intermediate space. In this study, the shape of vents in high-rise residential buildings has been inspected, and the survey about the interior environmental conditions related to the envelop of high-rise residential building has been conducted. Environmental measurement has been done to examine out door air quality for natural ventilation.

  • PDF

Insulation Saving Effect for Korean Apartment House Using Cross-Laminated Timber (CLT)

  • Pang, Sung-Jun;Lee, Bumjin;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.846-856
    • /
    • 2017
  • The aim of this study was to develop the details of cross-laminated timber (CLT) envelops for satisfying the design standard for energy saving (DSEA) and passive standard in South Korea. When the same thickness of 180 mm concrete or CLT was used and the same materials for other layers were used for the roof, wall, and interlayer floor, the required insulation thickness for the different building envelopes in central, southern, and Jeju island was evaluated. As a result, compared to the concrete envelop, about 43 mm of insulation thickness was reduced for wall and roof with the CLT envelope. When the CLT envelopes were modified to protect the CLT from moisture based on FPInnovations (2011), the insulation thickness was further reduced by 12 mm. When the modified CLT building envelops satisfied with a passive standard are used for 10-story building, the required insulation was decreased by $40.89m^3$ for a floor ($105.27m^2{\times}2.3m$ in height) compared to concrete building. As the number of floors increases, about 3.58 m3 of insulation per floor was additionally saved.

The Energy Saving Effect and Economic Assessment of Office Building according to the Building Envelope Remodeling (사무소 건물의 외피 리모델링에 따른 에너지절감효과 및 경제성 분석)

  • Choi, Seon woo;Kim, Ji Yeon;Park, Hyo soon;Kim, Jun Tae
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • The Korean government has introduced building regulations with improved energy conservation measures, including higher insulation levels for building envelope. However, there are many existing buildings that tend to consume more energy for heating and cooling than new buildings, as they were built under the former regulations with relatively higher U-values of walls and glazing. In order to improve energy efficiency in existing buildings, green remodelling of building envelope and building services are required. For existing buildings, building services improvements have been achieved through energy service company(ESCO), but much attention has not been paid to building envelope improvements with various reasons, such as uncertainty of energy saving effect design issues and costs. The aim of this study is to evaluate the impact of building envelope improvements in a typical commercial building on its heating and cooling energy loads. The results show that the improvement of glazing with lower U-values has the highest energy saving effects, followed by wall, roof and floor, under the condition of same level of insulation improvements. However, high insulated glazing increased LCC because of higher initial investment costs.