• Title/Summary/Keyword: Enhanced Matrix Mode

Search Result 20, Processing Time 0.025 seconds

MPEG Surround for Multi-Channel Audio Coding-Part 2: Various Modes and Tools (다채널 오디오 코딩을 위한 MPEG Surround-2부: 다양한 모드 및 툴들)

  • Pang, Hee-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.610-617
    • /
    • 2009
  • An overview of various modes and tools of MPEG Surround is provided Because the binaural mode of MPEG Surround supports the virtual 5.1-channel playback based on HRTFs, it can be played via headphones and earphones for portable audio devices. MPEG Surround also supports the enhanced matrix mode which converts stereo signals to 5.1-channel signals without side information, the 3D stereo mode which deals with 3D-coded signals, the low power version which greatly reduces the computational load in the decoding process. Besides, MPEG Surround provides the arbitrary downmix gains (ADGs) tool which is applied to artistic downmix signals, the matrix compatibility tool which is applied to downmix signals by conventional matrix-based methods, the residual coding tool -which can be used at high bit rates, and the GES tool which is applied to specific sound such as applause. The listening test results by various companies and organizations are also presented for important modes and tools.

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

Influence of the Diagonal Dominance of Modal Damping Matrix on the Decoupling Approximation (모드 댐핑 행렬의 대각선 성분 우세가 비연관화 근사에 미치는 영향)

  • 김정수;최기흥;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1963-1970
    • /
    • 1993
  • A simple technique to decouple the modal equations of motion of a linear nonclassically damped system is to neglect the off-diagonal elements of the modal damping matrix. This is called the decoupling approximation. It has generally been conceived that smallness of off-diagonal elements relative to the diagonal ones would validate its use. In this study, the relationship between elements of the modal damping matrix and the error arising from the decoupling approximation is explored. It is shown that the enhanced diagonal dominance of the modal damping matrix need not diminish the error. In fact, the error may even increase. Moreover, the error is found to be strongly dependent on the exitation. Therefore, within the practical range of engineering applications, diagonal dominance of the modal damping matrix would not be sufficient to supress the effect of modal coupling.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film (실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성)

  • Cho, Sung-Hun;Lee, Kyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.637-643
    • /
    • 2009
  • In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.

Interfacial Properties and Microfailure Mechanisms of Electrodeposited Carbon Fiber/epoxy-PEI Composites by Microdroplet and Surface Wettability Tests (Microdroplet 시험법과 Surface Wettability 측정을 이용한 전기증착된 탄소섬유 강화 Epoxy-PEI 복합재료의 계면물성과 미세파괴 메카니즘)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.153-157
    • /
    • 2001
  • Interfacial properties and microfailure modes of electrodeposition (ED) treated carbon fiber reinforced polyetherimide (PEI) toughened epoxy composite were investigated using microdroplet test and the measurement of surface wettability. As PEI content increased, Interfacial shear strength (IFSS) increased due to enhanced toughness and plastic deformation of PEI. In the untreated case, IFSS increased with adding PEI content, and IFSS of pure PEI matrix showed the highest. On the other hand, for ED-treated case IFSS increased with PEI content with rather low improvement rate. The work of adhesion between fiber and matrix was not directly proportional to IFSS for both the untreated and ED-treated cases. The matrix toughness might contribute to IFSS more likely than the surface wettability. Interfacial properties of epoxy-PEI composite can be affected efficiently by both the control of matrix toughness and ED treatment.

  • PDF

Magneto-Optical Effect of One-Dimentional Magnetophotonic Crystal Utilizing the Second Photonic Band Gap

  • Uchida, H.;Tanizaki, K.;Khanikaev, A.B.;Fedyanin, A.A.;Lim, P.B.;Inoue, M.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.139-142
    • /
    • 2006
  • We fabricated new one-dimensional magnetophotonic crystal (1D-MPC) utilizing the second and third photonic band gaps where localized modes existed. Structure of the 1D-MPC was $(Ta_{2}O_{5}/SiO_{2})_{5}/Bi:YIG/(SiO_{2}/Ta_{2}O_{5})_{5}$ with optical thicknesses of 3$\lambda$ /4 for $Ta_{2}O_{5} and $SiO_2$ dielectric layers and $\lambda$ /2 for Bi:YIG defect layer, where $\lambda$ is a wavelength of a localized mode in the second photonic band gap. Faraday rotation at the localized mode in the second photonic band gap was enhanced, which was confirmed by calculation using 4${\times}$4 matrix method.

Neutronics study on small power ADS loaded with recycled inert matrix fuel for transuranic elements transmutation using Serpent code

  • Vu, Thanh Mai;Hartanto, Donny;Ha, Pham Nhu Viet
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2095-2103
    • /
    • 2021
  • A small power ADS design using thorium oxide and diluent matrix reprocessed fuel is proposed for a high transmutation rate, small reactivity swing, and strong safety features. Two fuel matrices (CERCER and CERMET) and different recycled fuel compositions recovered from UO2 spent fuels with 45 GWd/tU and 60 GWd/tU burnup were investigated to determine the suitable fuel for the ADS. It was found that the transmutation of each isotope depends on TRU initial loading amount. After examining the cores, the results show that CERCER fueled ADS has a negative coolant void reactivity (CVR) and a smaller radiotoxicity at discharge compared to that of CERMET core. It implies that CERCER fuel has enhanced safety features and more flavor in terms of radiotoxicity management. To increase fuel utilization and core operation efficiency, a simple assembly shuffling pattern for the CERCER fueled ADS is also proposed. Eigenvalue and burnup calculations were conducted using Serpent 2 with ENDF/B-VII.0 library in both kcode and external source modes, and it indicates that the results of transmutation analyses obtained by kcode only is reliable to discuss the transmutation potential of ADS. Burnup calculation with the fixed-source mode is essential to be used for more practical results of the transmutation by ADS.

Evaluation of Interfacial Properties on the Electrodeposited Carbon Fiber Reinforced Polyetherimide Toughened Epoxy Composites using Micromechanical Test (Micromechanical 시험법을 이용한 전기증착된 탄소섬유 강화 Polyetherimide로 강인화된 에폭시 복합재료의 계면물성 평가)

  • 박종만;김대식;공진우;김민영;김원호
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2002
  • Interfacial properties and microfailure modes or electrodeposition(ED) treated carbon fiber reinforced polyetherimide(PEI) toughened epoxy composites were investigated using microdroplet test. ED was performed to improve the interfacial shear strength(IFSS). As PEI content increased, IFSS increased due to enhanced toughness and plastic deformation of PEI. In the untreated cafe, IFSS Increased with adding PEI content, and IFSS of pure PEI matrix showed the highest. On the other hand, thor ED-treated case IFSS increased with PEI content with rather low improvement rate. In the untreated case, neat epoxy resin appeared brittle microfailure mode, whereas pure PEI matrix exhibited more likely ductile microfailure mode. In the ED-treated case, neat epoxy exhibited more ductile fracture compared to the untreated case. Interfacial properties of epoxy-PEI composite can be affected efficiently by both the control of matrix toughness and ED treatment.

Magnetic Pulsed Compaction of nanostructured Al-Fe-Cr-Ti Powder and wear properties (Al-Fe-Cr-Ti 나노결정 합금분말의 자기펄스 성형 및 마모 특성)

  • Kim, Jun-Ho;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.528-530
    • /
    • 2008
  • The effect of consolidation temperature on the microstructure, density and mechanical properties (especially, wear property) of $Al_{92.5}-Fe_{2.5}-Cr_{2.5}-Ti_{2.5}$ alloy fabricated by gas atomization and magnetic pulsed compaction was investigated. All consolidated alloys consisted of homogeneously distributed fine-grained fcc-Al matrix and intermetallic compounds. Relative higher mechanical properties in the MPCed specimen were attributed to the retention of the nanostructure in consolidated bulk without cracks. The as consolidated bulk by magnetic pulsed compaction showed the enhanced wear properties than that of a general consolidation process. In addition, the wear mechanism and fracture mode of MPCed bulk was discussed.

  • PDF