Abstract
We fabricated new one-dimensional magnetophotonic crystal (1D-MPC) utilizing the second and third photonic band gaps where localized modes existed. Structure of the 1D-MPC was $(Ta_{2}O_{5}/SiO_{2})_{5}/Bi:YIG/(SiO_{2}/Ta_{2}O_{5})_{5}$ with optical thicknesses of 3$\lambda$ /4 for $Ta_{2}O_{5} and $SiO_2$ dielectric layers and $\lambda$ /2 for Bi:YIG defect layer, where $\lambda$ is a wavelength of a localized mode in the second photonic band gap. Faraday rotation at the localized mode in the second photonic band gap was enhanced, which was confirmed by calculation using 4${\times}$4 matrix method.