• Title/Summary/Keyword: Engineering Tool

Search Result 9,495, Processing Time 0.039 seconds

An Estimation of Tool Failure by Means of AE Signal and Surface Roughess in Turning Machining (선삭가공에 있어서 AE 신호와 표면 거칠기에 의한 공구손상에 대한 평가)

  • Han, Eung-Gyo;Lee, Beom-Seong;Park, Jun-Seo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.72-77
    • /
    • 1992
  • In this study, using in-process tool failure detecting system by AE method in turning machining, we measured AE signal from the tool, and the surface roughness of workpiece and then compared it with tool wear. As a result, we found that tool failure can be predicted by means of surface roughness of the workpiece and it can be predicted more precisely by the arithmetical average roughness (Ra) than by the maximum height of irregularities (Rmax) of the workpiece. Also, we found that we could judge whether it was sudden failure or the wear by means of the shape of AE signal and the range distri- bution of power spectrum frequency when tool danage was happened.

  • PDF

A Study on the Characteristics of AE Signals of Tool Failure for Continuous and Interrupted Cutting under CNC Lathe (CNC선반에서 연속절삭 및 단속절삭시 공구손상에 대한 음향방출신호 특성 연구)

  • Kim, T.B.;Kang, S.Y.;Kim, W.I.;Lee, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.136-142
    • /
    • 1996
  • Automatic monitoring of cutting process is one of the most important technology in machining. AE sensing technology has been applied to monitoring process and proved to be effective in detecting tool abnor- malities such as tool wear and fracture. In this experimental study. AE signals were detected from the tool holder for continuous and interrupted cutting, which obtained from changing workpice material configuration, under control of constant cutting speed from CNC lathe. From statistical and frequency analysis, the AE signals were analyzed to obtaining the characteristics of continuous and interrupted cutting conditions and tool failure. The Kurtosis values decreased but RMS voltages increased as the cutting speed increased, in both continuous and interrupted cutting. RMS voltage is suddenly increased but Kurtosis value is suddenly decreased when tool failure condition. Power spectrum density of AE signals when tool failure reaches extreme value around 0.065 cycles/ .mu. m.

  • PDF

Detection of the Cutting Tool's Damage by AE Signals for Austempered Ductile Iron (오스템퍼링 처리한 구상흑연주철의 AE신호에 의한 절삭공구 손상의 검출에 관한 연구)

  • Jun, T.O.;Park, H.S.;Ye, G.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.25-31
    • /
    • 1996
  • In this paper, three different types of commercial tools -P20, NC123K and ceramic- have been used to cut austempered ductile iron(ADI). In the austempered condition the materials are hard, strong and difficult to machine. Thus, we selected a optimum tool material among three different types of used tools in machining of austempered ductile iron. It was used acoustic emission (AE) to know cutting characteristic for selected tool and investigate characteristic of AE signal according to cutting condition and relationship between AE signal and flank wear land of the ceramic tool. The obtained results are as follows ; (1) The ceramic tool among three different types of tools is the best in machining austempered ductile iron. (2) In case of ceramic tool, the amplitude level of AE signal(AErms) is mainly affected by cutting condition and it is proportional to cutting speed. (3)There have been the relationship of direct proportion between the amplitude level of AE signal and flank wear land of the tool. (4) It was observed that the value of AErms was only affected by cutting speed. Therefore it is possible to in-process detec- tion of ceraic tool's wear in case the initial value of AErms at each cutting speed decided.

  • PDF

A Study on Practical Engineering Model for Tool Temperature Control (금형온도제어에 대한 실천공학모형 연구)

  • Shin, Ju-Kyung
    • Journal of Practical Engineering Education
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 2018
  • In injection molding, the tool temperature has a great influence on the quality of the molded article. The appropriate temperature is determined by the molding material and the quality required for the molded part, and the important point is that the temperature should be stable. First, the tool temperature should be set in accordance with the quality required by the molded article within the range of the tool temperature conditions suitable for the material. That is, the tool temperature changes depending on the importance of the surface gloss of the molded article, shortening of the molding cycle, prevention of deformation, degree of shrinkage, ease of resin flow and the like. In order to improve practical tool technology, we propose a training model of the difficult process of tool temperature control which can be utilized in industry that design and manufacture injection mold.

Development of tool-life prediction program to determine the optimal machining conditions in mold machining (금형 가공 시 최적 가공조건을 결정하기 위한 공구수명 예측 프로그램 개발)

  • Soon-Ok Park;Min-Hak Kim;Sun-Kyung Lee;Sung-Taek Jung
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2023
  • Recently, with the emergence of the 4th industrial revolution, the demand for smart factories and factory automation is increasing. In this study, a tool life prediction program was developed to select optimal machining conditions using CNC milling equipment, which is widely used in flexible production and automation. The equipment used in the experiment was Hwacheon Machine Tool's 5-axis machining equipment, and the tool used was a 17F2R tool. For the machining path, the down-milling cutting method was selected and long-term machining was performed. The analysis standard for side wear on the tool was set at 0.1 to 0.2 mm, and tool life data and wear data were obtained in the cutting experiment. The program was created through the data obtained from the experiment, and a prediction rate of over 90% was secured when comparing the experimental data and the predicted data.

  • PDF

Tool Geometry for Improving Tool-Life in Turning of STS 304 (STS 304의 선삭에서 공구수명 향상을 위한 공구형상)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.581-584
    • /
    • 2003
  • The austenitic STS 304 stainless steel was turned to clarify the effects of tool geometry on the tool wear. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, exhibiting larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN-TiCN-TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with large approach angle showed the longest tool life of all tools used in this tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of 15$^{\circ}$became smaller than with that of -5$^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

  • PDF

A Development of Fixed Address Type Automatic Tool Change System for Machine Tool (공작기계용 고정번지식 자동 공구교환 시스템 개발)

  • 이춘만;허영진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1150-1153
    • /
    • 2003
  • Recently, Many studies have been undergoing to reduce a working time in a field of machine tool. There are two ways of reducing working time; to reduce actual working time by heighten spindle speed and to reduce stand-by time by shortening tool exchange time. Automatic tool change system belongs to the latter case. Fixed address type automatic tool change system that is being developed in this study can store more number of tool in small space than magazine transfer type automatic tool changer as well as shorten tool exchange time. In this paper, a simplified equivalent model of finite element method in order to analyze frame structure of fixed address type automatic tool change system is presented.

  • PDF

A Study on the Design and Structural analysis of High Integrated Tool Tower ATC for Machine Tool (공작기계용 고 집적형 Tool Tower ATC 설계 및 구조 해석에 관한 연구)

  • Lee C.M.;Lim S.H.;Roh Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.551-554
    • /
    • 2005
  • This study is concerned about the design and structural analysis of high integrated tool tower ATC(Automatic Tool Changer) for machine tool. Recently, many studies have been undergoing to reduce a working time in a field of machine tool. Tool tower ATC belongs to reduce a stand-by time by shortening a tool exchanging time. The developed system can store more number of tool in small space than other machine. The analysis is carried out by CATIA V5 software. In the result of structural analysis, the safety factor of the developed system is confirmed.

  • PDF

A Study on the Compensation of Milling Errors by Regenerating of Tool Trajectory (공구 궤적 재구성에 의한 밀링 가공 오차의 보상에 관한 연구)

  • 쟝이브하스퀘트;필립데팡세;서태일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.137-144
    • /
    • 1998
  • In this paper we present our research dealing with the problem of tool deflection during the milling. We try to compensate the errors by considering a new tool trajectory. In order to determine the compensated tool trajectory, the problem is divided in three steps : cutting forces model, tool deflection model and trajectory compensation. Starting from experimental data, we determine a cutting forces model., which allows us to anticipate the tool deflection along one nominal path. In order to determine the compensated tool trajectory, we propose in this paper a method of path compensation, called “mirror method”. This method of tool path optimization allows to minimize errors due to tool deflection. Several examples are processed in simulations and validated experimentally.

  • PDF

Prediction of Cutting Force and Machinig Error in the Ball-end Milling Process (공구변형을 고려한 볼엔드밀의 절삭력과 가공오차 예측)

  • 조필주;김규만;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1003-1008
    • /
    • 1997
  • In this paper, the prediction of cutting force and tool deflection in the ball-end milling process are studied. Identifying various cutting region using Z-map, cutting force in the ball-end milling process can be predicted. Cutting force deflects the tool and the tool deflection changes the cutting force. Tool deflection is included in the cutting force prediction. Tool deflecition also causes machining error of the machined surface. A series of experiments were performed to verify the simulated cutting force and machining error.

  • PDF