• Title/Summary/Keyword: Engine mounting rubber

Search Result 17, Processing Time 0.041 seconds

Prediction of Durability, Static and Dynamic Properties on Rubber (엔진마운트 고무부품의 내구 평가 및 동적 특성 예측)

  • Kim, Choon-Hyu;Kim, Kee-Joo;Jeong, Hyo-Tae;Kim, Cheol-Woong;Sohn, Il-Seon;Kim, Joong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.17-23
    • /
    • 2006
  • Rubber materials have the nonlinear, large deformation and viscoelastic behavior. W.D. Kim et al. studied these characteristics through the static, fatigue, dynamic, aging and viscoelastic test. This paper discussed that the properties of engine mounting rubber, such as static stiffness, fatigue life and damping factor, are predicted based on CAE by using material properties acquired by the report of Kim et al. In result, the static stiffness of engine mounting rubber is predicted approximately in comparison with test value. Also, it was confirmed that the relationship of fatigue life and Green-Lagrange strain in specimen was the valid tool to predict the fatigue life of engine mounting rubber. From the results of transient viscoelastic analysis the damping factor changed rapidly at the range less than 8hz.

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.671-675
    • /
    • 2001
  • Elastomers, which are engine mounts and body mounting rubbers, are traditionally designed for NVH use in vehicles, and they are designed to isolate specific unwanted frequencies. According to the measurement of the characteristics of engine mounts and body mounting rubbers, dynamic stiffness changes with respect to the driving miles accumulated in engine mounts and initial load in body mounting. This study looks at the variability in same engine mount properties, and the desired dynamic stiffness may increased with driving miles accumulated. And the dynamic stiffness of body mounting rubber changes very stiff above 150Hz.

  • PDF

Optimum Shape Design of Engine Mounting Rubber Using a Parametric Approach (형상 파라미터화 방법을 이용한 엔진 마운트용 고무의 형상 최적화)

  • Kim, J.J.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.33-41
    • /
    • 1994
  • The procedure to design the engine mount is briefly discussed and the optimum shape design process of engine mounting rubber using a parametric approach is suggested. An optimization code is developed to determine the shape to meet the stiffness requirements of engine mounts, coupled with the commercial nonlinear finite element program ABAQUS. A bush type engine mount used in a current passenger car is chosen for an application model. The shape from the result of the parameter optimization is determined as a final model with some modifications. The shape and stiffness of each optimization stage are shown and the stiffness of the optimized model along the principal direction is compared with the design specification of the current model. Finally, an overview of the current status and future works for the engine mount design are discussed.

  • PDF

A Study on the Design of Resilient Mounting Systems for Marine Diesel Engines (선박용 디젤엔진의 탄성지지계 설계에 관한 연구)

  • 김성춘;이돈출;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.56-67
    • /
    • 1994
  • The installation methods of diesel engines in ships would be largely classified into two groups : one is the direct mounting system fixing engine directly into double bottom of the hull, and the other is the resilient mounting system having vibration absorbers between engine and ship body such as rubber plate to prevent shocks or vibration transmission. The direct mounting system is generally used for large-sized low speed diesel engines, because the resilient mounting system has difficulties in reducing the natural frequency of engine itself under normal speed. On the contrary, the resilient mounting system is often used for medium or high speed engines for marine propulsion and generator that have light weight and high revolution speed. Recently, it is even applied to engines having relatively low speed(300-400rpm) for fishing boats. Although many researches for the resilient mounting system have been carried out, many problems in applying these results directly to marine vessels because most of these have been used for automobiles. Up to now we have had to depend on the professional foreign company in design and the supply of parts for the resilient mounting system of marinediesel engines utterly. In preseut study, the exciting forces of engines effecting to resilient mounting were examined, and patterns of vibration and evaluation procedure for force transmission from resilient mounting to the body of hull were established. Also, these results were applied to the analysis of free and forced vibration for the rubber-type resilient mounting systems of marine diesel engines. Besides, after changing the various design parameters, such as locations, angles, dynamic characteristics and the number of resilient mountings, the influences on resilient mounting system were also examined.

  • PDF

The effects of engine's misfiring condition on the dynamic behaviour of resilient mounting systems (엔진의 착화실패가 탄성지지계의 동적거동에 미치는 영향)

  • 손석훈;장민오;김성춘;김의간
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.188-193
    • /
    • 1996
  • The purpose of resilient mounting for marine engine is to prevent noise and ship damages caused by engine vibration. Although many researches for the resilient mounting system have been carried out, these results have limit to apply on the marine engine systems. Because marine engine generally have low speed operating range and have to consider misfiring condition. In this paper, we studied the effect of engine's misfiring on the resilient mounting systems. And the influences of design parameters, such as dynamic characteristics and location angles of resilient rubber mountings, were also examined on the single and double resilient mounting systems.

  • PDF

Analysis of Mount Reaction Forces for Powertrain Mounting Systems using Nonlinear Characteristics (비선형 특성을 적용한 파워트레인 마운팅 시스템의 마운트 전달력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • The primary objective of this study is to truly understand reaction force be due to engine exciting force. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand reaction force was applied MSC.Nastran software. Analyzed frequency response analysis of powertrain mount system. First, engine exciting force was applied field function. Also nonlinear characteristics was applied field function : such as dynamic spring constant and loss factor. And nonlinear characteristics was applied CBUSH. Generally characteristics of rubber mount is constant frequency. But characteristics of hydraulic mount depend to frequency. Therefore nonlinear characteristics was applied. Powertrain mounting system be influenced by powertrain specification, mount position, mount angle and mount characteristics etc. In this study, we was analyzed effects of powertrain mounting system. And we was varied dynamics spring constant and loss factor of mounts.

  • PDF

Designing isolation system for Engine/Compressor Assembly of GAS Driven Heat Pump (가스 엔진 구동 열펌프 실외기 엔진/압축기 진동 절연 설계)

  • Lenchine Valeri V.;Ko, Hong-Seok;Joo, Jae-Man;Oh, Sang-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1128-1133
    • /
    • 2003
  • A gas driven heat pump (GHP) core design comprises internal combustion engine, compressors incorporated to a cooling/heating system, rubber mountings and belt transmissions. Main excitation farces are generated by an engine, compressors themselves and belt fluctuation. It leads to high vibration level of the mount that can cause damage of GHP elements. Therefore an appropriate design of the mounting system is crucial in terms of reliability and vibration reduction. In this paper oscillation of the engine mount is explored both experimentally and analytically. Experimental analysis of natural frequencies and operational frequency response of the GHP engine mounting system enables to create simplified model for numerical and analytical investigations. It is worked out criteria f3r vibration abatement of the isolated structure. Influence of bracket stiffness between engine and compressors, suspension locations and damper performance is investigated. Ways to reduce excitation forces and improve dynamic performance of the engine-compressor mounting system are considered from these analyses. Implementation of the proposed approach permits to choose appropriate rubber mountings and their location as well as joining elements design A phase matching technique can be employed to control forces from main exciters. It enables to changing vibration response of the structure by control of natural modes contribution. Proposed changes lead to significant vibration reduction and can be easily utilized in engineering practice.

  • PDF

Forced Vibration Analysis of Engine Resilient Mounting System Modelled with Multi-mass and Multi-degree-of-freedom (다질점계로 모델링한 기관 탄성지지계의 강제진동 해석에 관한 연구)

  • 김성춘;김창남;변용수;김의간
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.775-782
    • /
    • 2000
  • Being carried out a number of studies for the resilient mounting system of automobile engine than that of the studies for marine engines, many research results for the case of the resilient mounting system of the automobile engine have applied in the analysis for the case of marine engine. However, the size and the power of automobile engines are not only relatively small but also their operating conditions are quite different form those of marine engines. For the analysis of the automobile engine Wavelet shrinkage, misfire condition and unload condition have not been considered. Accordingly , it is not desirable to apply the results obtained form the case of automobile engines to the case of marine engines. In this study , exciting and damping forces working on the marine engine are formulated mathematically in order to apply to the design of a resilient mounting system of engine effectively. futhermore, some mathematical formulation for the analysis of the transmissibility of multi-body system are proposed. A new computer program which is able to calculate the free vibration, the transmissibility and the forced vibration of a resilient mounting system has been developed, As an application of this developed computer program, the dynamic behavior of resilient system with an actual rubber spring for the case of 6-degree-of-freedom system and 36-degree-of-freedom system are evaluated quantitatively.

  • PDF

The Effects of Engine's Misfiring Condition on the Dynamic Behaviour of Resilient Mounting Systems (엔진의 착화실패가 탄성지지계의 동적거동에 미치는 영향)

  • 장민오;손석훈;김의간;김의간
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.503-511
    • /
    • 1996
  • There is a tendency of using the resilient mounting system to control the structure born noise transimitted from a engine of which weight is comparatively light and of which speed is comparatively high. According to recent reports, the resilient mounting system is applied to control the vibration of a engine running up to 300 - 400 R.P.M.. Furthermore, the resilient system is also used to the ships such as marine exploring ships, fishing boats, and military vessels. It is not desirous to apply the results for the resilient mounting systems of automobile engines to the controls of the vibrations of marine engines. Marine engines are worked under the idle speed in port and are operated up to the maximum contineous revolution at sea(running up condition). And marine engines are usually worked in inevitable conditions such as a misfire and a cut-off cylinder operating condition. Concerning the above running conditions, a resilient mounting system should be designed in the case of marine engines. In this paper, we studied the effect of engine's misfire on the resilient mounting systems. And the influences of design parameters, such as dynamic characteristics and fitting angles of resilient rubber mountings, were also investigated respectively on the single and double resilient mounting systems.

  • PDF

Vibration Reduction of Forklift Truck Using Optimization of Engine Mount Layout (마운트 배치 최적화를 통한 지게차 엔진 진동 저감)

  • Kim, Younghyun;Kim, Kyutae;Lee, Wontae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2014
  • The engine excitation forces are considered as major vibration source for the forklift truck, especially in small class. Even though the current engine mounting system designs are acceptable for vibration isolation, the performance of the engine mounting system is still required for the tendency of light weight, higher power and driver's higher vibration requirement. In this paper vibration reduction technique of forklift engine which is supported on rubber mounts is presented. Based on the dynamic model of resilient engine mounting system, design evaluation program is established. The design optimization technique and evaluation method of system properties are discussed. Effects of optimal design are validated through comparison with test results.