• 제목/요약/키워드: Engine hood

검색결과 17건 처리시간 0.024초

AZ31 마그네슘합금의 자동차 Hood Panel적용에 따른 주파수응답 및 소음 특성의 변화 (Noise Characteristics and Frequency Response Function on Implementation of AZ31 Magnesium Alloy to Automobile Hood Panel)

  • 이충도;여동훈
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.139-146
    • /
    • 2011
  • In present study, it aims to compare the noise and vibration characteristics between magnesium alloy and steel hood panel. The AZ31 magnesium hood panel was fabricated through warm forming process, and the noise and vibration characteristics between both hood panels was compared through the measurement of engine radiation noise and transmission loss, as well as FRF on modal analysis. The sound insulation performance of magnesium alloy was wholly superior to that of steel hood panel, even though the transmission loss of magnesium alloy is lower than that of steel due to mass effect primarily. The FRF characteristics on modal analysis indicates that the resonance frequency of magnesium hood panel is remarkably increased to higher value than that of steel hood panel. The radiation and interior noise of magnesium panel even without acoustic hood insulation were remarkably lower than those of steel hood panel with acoustic insulation, in particular, at a range below 4,000 rpm.

차량 엔진룸 냉각용 후드 개발을 위한 수치해석 (Numerical analysis for development of vehicle engine room cooling hood)

  • 이석영
    • 에너지공학
    • /
    • 제27권4호
    • /
    • pp.92-97
    • /
    • 2018
  • 본 연구는 자동차 엔진룸 내부에서 엔진과 연계된 부품의 냉각효과를 높이기 위해 후드 개발을 위한 수치해석을 다루고 있다. 급격한 온도편차에서 유발되는 엔진룸내 부품 온도를 저감시키면 부품에 대한 내구성 저하를 최소화 할 수 있다. 따라서, 본 연구에서는 차량 엔진룸 주요 부품 중에서도 온도제어가 비교적 용이한 발전기, 배터리, ECU 및 파워스틸 오일 등 4가지 부품을 목표로 엔진룸 냉각용 후드 개발을 위한 수치해석을 수행하였다. 그리고 수치해석을 검증하기 위하여 수치해석에서 가정하였던 동일한 조건으로 실험을 수행하여 비교하였다.

G7 동력차 동력실 유동해석을 통한 루프후드 구조 연구 (The study for roof hood structure of G7 power car engine compartment using air flow analysis.)

  • 박광복;장규호;이동훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.634-644
    • /
    • 2000
  • The study was carried out about the roof hood structure of power car for Korean High Speed Train. The compatibility for applied material and volume of hood duct was studied using analysis about heat and flow distributions. The materials and volume of duct were mainly determined by output air temperature and flow rate of each electric blocks. This report was described, which focuses on pressure distribution and air temperature within engine compartment of power car.

  • PDF

공압 실린더 및 단순 링크기구를 이용한 충돌 보행자 보호 장치에 관한 연구 (Study on Pedestrian Protection device in collision using Pneumatic cylinder and simple link mechanism)

  • 노상현;이동렬
    • 동력기계공학회지
    • /
    • 제12권4호
    • /
    • pp.64-71
    • /
    • 2008
  • This study is on pedestrian protection device using pneumatic cylinder and simple link mechanism when vehicle collide with pedestrian. This study ensured the safety space between engine and hood after it applies to simple link mechanism and pneumatic cylinder. It can absorb the damage which measure the specific device if vehicle collide with pedestrian. Combination of simple link mechanism and pneumatic cylinder was more superior than the present pedestrian protection device. Simple link mechanism could confirm superior height and survival probability than when only cylinder operated. It also ensured enough space between engine and hood. And if a cylinder is not working because of old cylinder, poor repair or damage of accident vertical cylinder would be difficult to execute because there exists the irregular space between engine and hood. If simple link mechanism operates with only one cylinder it could ensure the regular space because simple link mechanism set up at the middle of hood. So this device could confirm high safety for pedestrian.

  • PDF

보행자 보호를 위한 안전 후드 개발 (Development of Safe Hood for Pedestrian Protection)

  • 김태정;홍승현;이두환;한도석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.345-346
    • /
    • 2008
  • Most pedestrian-vehicle crashes involve frontal impacts, and the vehicle front structures are responsible for most pedestrian injuries. The vehicle bumper contacts the lower legs at first. The leading edge of the hood (bonnet) strikes the proximal upper leg and finally, the head and upper torso hit the top surface of the hood or windscreen. In essence, the pedestrian wraps around the front of the vehicle until pedestrian and vehicle are traveling at the same speed. Since the hood surface is made from sheet metal, it is a relatively compliant structure and does not pose a major risk for severe head trauma. However, serious head injury can occur when the head hits a region of the hood with stiff underlying structures such as engine components. The solution is to provide sufficient clearance between the hood and underlying structures for controlled deceleration of a pedestrian's head. However, considerations of aerodynamic design and styling can make it extremely difficult to alter a vehicle's front end geometry to provide more under-hood space. In this study, the safe hood will be developed by designing new conceptual inner panel in order to decrease the pedestrian's head injuries without changing hood outer geometry.

  • PDF

VaRTM 공법을 이용한 자동차용 엔진후드 개발 (Properties of CFRP by VaRTM process and its application to automobile engine hood)

  • 김윤해;최병근;조영대;손진호;엄수현;우병훈
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.146-149
    • /
    • 2005
  • The using of composite material is an aviation field but it changes into a general industry. Especially composites are expanding the use on transportation vehicles like automobiles, ships, and aircrafts. The main factor of this expansion is high specific strength. It can supply a high quality and efficiency of energy. But manufacturing of composite products requires many raw materials and tooling cost for special process, so we needs a reduction of these costs to achieve best efficiency. In the present study, we contrast the change of mechanical and physical properties between VaRTM(Vacuum Assisted Resin Transfer Molding) and hand lay-up process. VaRTM process can offer a high quality the same as autoclave products, and low cost like hand lay-up process. In the results of mechanical tests, VaRTM specimen is stronger than hand lay-up specimen and hand lay-up specimen became delamination. In the results of physical tests, the resin content of VaRTM specimen is lower than hand lay-up specimen. On micrograph, the strength of specimen by VaRTM between fiber and resin is stronger than that of one by hand lay-up. And the specimen by hand lay-up contains more defects than one by VaRTM. So, VaRTM process can practically apply for automobile engine hood. This paper shows that VaRTM process is one of the most suitable processes for composite parts of automobile.

  • PDF

VaRTM 공법에 의해 제조된 CFRP의 특성평가 및 자동차 엔진 후드에 응용 (Properties of CFRP by VaRTM Process and Its Application to Automobile Engine Hood)

  • 김윤해;최병근;손진호;조영대;엄수현;우병훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.377-381
    • /
    • 2005
  • The using of composite material is an aviation field but it changes into a general industry. Especially composites are expanding the use on transportation vehicles like automobiles, ships, and aircraft. The main factor of this expansion is high specific strength. It can supply a high quality and efficiency of energy. But manufacturing of composite products requires many raw materials and tooling cost for special process, so we needs a reduction of these costs to achieve best efficiency. In the present study, we contrast the change of mechanical and physical properties between VaRTM(Vacuum Assisted Resin Transfer Molding) and hand lay-up process. VaRTM process can offer a high quality the same as autoclave products, and low cost like hand lay-up process. In the results of mechanical tests, VaRTM specimen is stronger than hand lay-up specimen and hand lay-up specimen became delamination. In the results of physical tests, the resin content of VaRTM specimen is lower than hand lay-up specimen. On micrograph, the strength of specimen by VaRTM between fiber and resin is stronger than that of one by hand lay-up. And the specimen by hand lay-up contains more defects than one by VaRTM. So, VaRTM process can practically apply for automobile engine hood. This paper shows that VaRTM process is one of the most suitable processes for composite parts of automobile.

  • PDF

충돌 해석을 이용한 능동형 보행자 보호 시스템의 성능 분석 (Performance Analysis of an Active System for Pedestrian Protection Using Impact Analysis)

  • 박종선;정성범;윤용원;박경진
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.100-107
    • /
    • 2013
  • Although automotive safety technologies have been developed steadily, the efforts for pedestrian protection still seems to be insufficient. In a car-pedestrian accident, the structures such as the engine under a hood, the lower part of a windshield and the A-pillar are the major causes of fatal pedestrian injuries. Recently, there have been several studies on the active safety system to reduce the pedestrian injuries. The safety system consists of an active hood lift system and a pedestrian airbag. In this research, the safety performance of the active hood lift system and the pedestrian airbag is investigated by using the finite element method. The finite element model of the system is set up based on the head impact test, and the impact analyses are performed. The necessity and the usefulness of the safety system are verified.

엔진룸내 방열기 전단면 유동 불균일도 측정에 관한 연구 (Experimental Study of the Non-Uniform Mean Flow at the Front of a Radiator in Engine Room)

  • 류명석
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.72-79
    • /
    • 1996
  • The recent trend of higher output engines with more auxiliary parts is resulting in greater heat generation in the engine compartment. In order to maximize the heat dissipation and eliminate the inefficient flow in the engine compartment, it is necessary to understand the flow field under the hood. In this respect, experimental study as well as numerical analysis should be conducted. The automated measuring system was constructed to obtain three dimensional mean flow data with high accuracy. The measurements have been made on a vehicle with a steady incoming air flow. The result shows that there exists a high degree of non-uniformity in the mean flow velocity at the front of radiator.

  • PDF