• 제목/요약/키워드: Energy-optimized control

검색결과 238건 처리시간 0.056초

Quantitative Analysis and Comparisons between In-Phase Control and Energy-Optimized Control for Series Power Quality Controllers

  • Xinming, Hunag;Jinjun, Liu;Hui, Zhang
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.553-566
    • /
    • 2009
  • In-phase control and energy-optimized control are the two major control strategies proposed for series power quality controllers (SPQC). However quantitative analysis and comparison between these two control strategies is quite limited in previous publications. In this paper, an extensive quantitative analysis is carried out on these two control strategies through phasor diagram approach, and a detailed quantitative comparison is conducted accordingly. The load current is used as the reference phasor, and this leads to a simpler and clearer phasor diagram for the quantitative relationship. Subsequently detailed analysis of SPQC using in-phase control and energy-optimized control are provided respectively, under different modes both for under voltage/voltage sag and for over voltage/voltage swell. The closed form analytic expressions and the curves describing SPQC compensation characteristics are obtained. The detailed system power flow is figured out for each mode, and the detailed quantitative comparison between the two control strategies is then carried out. The comparison covers several aspects of SPQC, such as required compensating voltage magnitude, required capacity of energy storage component, and maximal ride-through time. In the end, computer simulation and prototype experimental results are shown to verify the validity of all the analysis and the result of the comparison.

위상 최적화를 이용한 능동 감쇠층의 설계 (Design of an Active Damping Layer Using Topology Optimization)

  • 김태우;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.660-664
    • /
    • 2003
  • The optimal thickness distribution of an active damping layer is sought so that it satisfies a certain constraint on the dynamic performance of a system minimizing control efforts. To obtain a topologically optimized configuration, which includes size and shape optimization, thickness of the active damping layer is interpolated using linear functions. With the control energy as the objective function to be minimized, the state error energy is introduced as the dynamic performance criterion for the system and used lot a constraint. The optimal control gains are evaluated from LQR simultaneously as the optimization of the layer position proceeds. From numerical simulation, the topologically optimized distribution of the active damping layer shows the same dynamic performance and cost as the Idly covered counterpart, which is optimized only in terms of control gains, with less amount of the layer.

  • PDF

Optimization of reactivity control in a small modular sodium-cooled fast reactor

  • Guo, H.;Buiron, L.;Sciora, P.;Kooyman, T.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1367-1379
    • /
    • 2020
  • The small modular sodium-cooled fast reactor (SMSFR) is an important component of Generation-IV reactors. The objective of this work is to improve the reactivity control in SMSFR by using innovative systems, including burnable poisons and optimized control rods. SMSFR with MOX fuel usually exhibits high burnup reactivity loss that leads to high excess reactivity and potential fuel melting in control rod withdrawal (CRW) accidents, which becomes an important constraint on the safety and economic efficiency of SMSFR. This work applies two types of burnable poisons in a SMSFR to reduce the excess reactivity. The first one homogenously loads minor actinides in the fuel. The second one combines absorber and moderators in specific assemblies. The influence of burnable poisons on the core characteristics is discussed and integrated into the analysis of CRW accidents. The results show that burnable poisons improve the safety performance of the core in a significant way. Burnable poisons also lessen the demand for the number, absorption ability, and insertion depth of control rods. Two optimized control rod designs with rare earth oxides (Eu2O3 and Gd2O3) and moderators are compared to the conventional design with natural boron carbide (B4C). The optimized designs show improved neutronic and safety performance.

ICT를 활용한 병원건물의 에너지 절감방안 연구 (Empirical Research on Application of ICT for Reduction of Energy Consumption of Hospital Buildings)

  • 이정환;한영도;김동욱
    • 한국콘텐츠학회논문지
    • /
    • 제18권1호
    • /
    • pp.422-430
    • /
    • 2018
  • 최근 유가 상승과 건물 에너지 소비 증가는 에너지 자원 해외 의존도가 높은 우리나라에 큰 부담이 되고 있다. 이런 상황에서 에너지 소비량의 40% 수준을 차지하는 빌딩건물의 에너지절감은 매우 중요한 이슈가 되는데, 본 연구는 ICT를 활용하여 건물에너지 소비량 및 전력사용요금 절감을 하는 최적제어방법을 구현한 실증 분석을 병원을 대상으로 수행하였다. 먼저 기존의 냉난방용 흡수식 냉온수기와 급탕용 보일러시설 일부를 수축열 히트펌프로 대체하고 사용하는 요금제의 조정을 통해 에너지소비량을 줄이고 요금을 절감하였다. 여기에 환경(외기온도, 사용량 증감 등) 변화를 고려한 ICT 기반 최적제어 기능을 추가적으로 적용함으로 기존 설비 대체 중심의 에너지절감 방법과 ICT 기반의 최적제어방법까지 고려한 효과를 분석하였다. 그 결과 본 연구에서 병원 대상의 최적제어방법은 에너지효율화 설비 적용으로 인한 절감량(53.6%)에 최적자동제어 효과(18.2%)까지 추가적으로 절감할 수 있는 것을 확인하였다. 본 연구 결과를 바탕으로 건물 에너지 절감 성과를 높이는 다양한 방안을 검토해 볼 수 있을 것이다.

Switching rules based on fuzzy energy regions for a switching control of underactuated robot systems

  • Ichida, Keisuke;Izumi, Kiyotaka;Watanabe, Keigo;Uchida, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1949-1954
    • /
    • 2005
  • One of control methods for underactuated manipulators is known as a switching control which selects a partially-stable controller using a prespecified switching rule. A switching computed torque control with a fuzzy energy region method was proposed. In this approach, some partly stable controllers are designed by the computed torque method, and a switching rule is based on fuzzy energy regions. Design parameters related to boundary curves of fuzzy energy regions are optimized offline by a genetic algorithm (GA). In this paper, we discuss on parameters obtained by GA. The effectiveness of the switching fuzzy energy method is demonstrated with some simulations.

  • PDF

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.

PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계 (Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film)

  • 황준석;목지원;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

가압을 통한 도시형 생활 폐기물 기반 합성가스발효 공정 개발 (Municipal Solid Waste-derived Syngas Fermentation Process by Pressurization)

  • 신수빈;고재희;문명훈;김민식;이문규;장인섭;손성수;박권우
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.35-45
    • /
    • 2023
  • Global efforts are focused on achieving carbon neutrality due to the increases in the levels of greenhouse gases. Moreover, the greenhouse gases generated from the disposal of municipal solid waste (MSW) are the primary sources of emissions in South Korea. In this study, we conducted the biological conversion of syngas (CO, H2, and CO2) generated from MSW gasification. The MSW-derived syngas was used as a feed source for cultivating Eubacterium limosum KIST612, and pressurization was employed to enhance gas solubility in culture broth. However, the pH of the medium decreased owing to the pressurization because of the CO2 in the syngas and the cultivation-associated organic acid production. The replacement of conventional HEPES buffer with a phosphate buffer led to an approximately 2.5-fold increase in acetic acid concentration. Furthermore, compared with the control group, the pressurized reactor exhibited a maximum 8.28-fold increase in the CO consumption rate and a 3.8-fold increase in the H2 consumption rate.

탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화 (Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body)

  • 최재능;이상호;정경민;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.

Energy Minimization을 이용한 유압 호스의 최적 경로 설계 (Optimization Routing Path Design of Hydraulic Hose Using Energy Minimization)

  • 임호빈;권강;김재정
    • 한국CDE학회논문집
    • /
    • 제17권4호
    • /
    • pp.246-252
    • /
    • 2012
  • The piping route of hydraulic hose is designed with avoiding interferences to surrounding components. However, in a real practice, the piping route is mostly decided with an expert's experiences on site due to the complexity of design. Thus, this paper proposes a design methodology of the optimized route of a hose. We use NURBS representation to describe the piping route, which is possible to be locally modified, and an energy minimization method is applied to avoid interferences to the surroundings. In other words, the NURBS curve describing a piping route is modified to meet the desired positions from minimizing the perturbation of the control points, and the strain energy of the curve is then optimized to make the curve natural. The proposed method is implemented and its feasibility is validated using the commercial CAD software, CATIA V5.