• Title/Summary/Keyword: Energy-Harvesting System

Search Result 300, Processing Time 0.025 seconds

Frequency Characteristics of Energy Harvester Using Piezoelectric Elements (압전식 에너지 수확기의 주파수 특성)

  • Yun, So-Nam;Kim, Dong-Gun;Ham, Young-Bog;Park, Jung-Ho;Jeong, Byeong-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3131-3135
    • /
    • 2008
  • This paper presents an energy harvester using piezoelectric elements that is a kind of generator which converts the mechanical power to the electric one using windmill system with many PZT actuators. In this study, low frequency characteristics of the cantilever-type piezoelectric actuator are experimentally investigated. Advantages of the cantilever use are to take a very large displacement and to improve the endurance of the PZT element. The material of cantilever is an aluminum and three kinds of cantilever of which size is $150[mm]{\times}20[mm]{\times}1.5[mm]$, $170[mm]{\times}20[mm]{\times}1.5[mm]$ and $190[mm]{\times}20[mm]{\times}1.5[mm]$ were experimented, respectively. The cantilever was fixed on the vibrator. The characteristics of frequency and mass variation of cantilever end part such as 0[g], 5[g], 10[g] are investigated. Maximum voltage was outputted at the condition of $150[mm]{\times}20[mm]{\times}1.5[mm]$ and 10[g] of mass. It was confirmed that the lower natural frequency at the larger length of cantilever and at the bigger of mass is gotten.

  • PDF

Status of Mechanization of Small Farms in India

  • Ojha, T.P.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.263-269
    • /
    • 1996
  • In indian agricultural , the energy use pattern has played dominant role in influencing the level of mechanization . Besides that the agro-climatic factors as well as the size of holdings do affect the degree of mechanization . Nearly 30 percent of total cultivated area is owned by l76 percent of the small and tiny land holders each owning even less than a hectare. On the other hand, about 2 percent of land owners cultivate land. These variabilitieshave greatly influenced the ownership of power sources on Indian farms. Small farmers, employ human and animal energies with the use of hand tools and animal drawn equipments. Whereases, the use of tractors, power tillers, electric motors, etc. on small farms is on a marginal scale. There are few pockets and also extensive wheat growing regions where mechanical and electrical power sources are extensively used in production agriculture leading to about 185% of cropping intensity . In that region, the animal energy is employed for on the farm transport of fertilizers, fodders and fuel to support milch animals and other household activities . Inspite of high degree of mechanization, the harvesting of crops is done by human labour with few exceptions of harvesting wheat crops by combines in few pockets. In overall assessment of mechanization, the following conclusions are drawn : ⅰ) Farm operation which show a growing trend of mechanization are (a) tillge, (b) seedling (c) Irrigation (d) Plant protection application (e) Threshing and (f) Transport . ⅱ) Crop cultivation system in respect of wheat, maize and sorghum have been greatly mechanized. ⅲ) The least mechanized cropping systems are (a) vegetable production and (b) cultivation of sugarcane, cotton, rice and pulses. ⅳ) Annual production of tractor has touched the figure of 280.000 by 1995 and the total number has crossed 1.5million on Indian farms.

  • PDF

Effective Design of the Broadband Horn Antenna Using Multi-mode Network Analysis (다중모드 회로망 분석을 이용한 광대역 혼 안테나의 효율적인 설계)

  • Moon, Jung-Ick;Cho, In-Gui;Kim, Sung-Min
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • This paper proposes the effective design procedure for a broadband, double-ridged horn antenna for evaluating the performance of the RF energy harvesting system with a multi-band rectenna. Using multi-mode network analysis, the higher-mode scattering parameters of the transition and horn were acquired and applied to the antenna design, respectively. As a result, the computing time could be reduced and the calculated VSWR(voltage standing wave ratio) of the antenna was very similar to the analyzed result using fully electromagnetic simulation. And there was also good agreement between the simulated and measured results. The designed broadband antenna has a bandwidth of 660~6360 MHz and 6~13.7 dBi peak radiation gain.

Development of Energy Harvesting Hybrid system consisted of Electrochromic Device and Dye-Sensitized Solar Cell using Nano Particle Deposition System (나노 입자 적층 시스템(NPDS)을 이용한 염료 감응 태양전지 - 전기 변색 통합 소자 및 에너지 하베스팅 시스템에 대한 연구)

  • Kim, Kwangmin;Kim, Hyungsub;Choi, Dahyun;Lee, Minji;Park, Yunchan;Chu, Wonshik;Chun, Dooman;Lee, Caroline Sunyong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • In this study, Antimony Tin Oxide (ATO) ion storage layer and $TiO_2$ working electrode were fabricated using Nano Particle Deposition System. NPDS is the cutting-edge technology among the dry deposition methods. Accelerated particles are deposited on the substrate through the nozzle using NPDS. The thicknesses for coated layers were measured and layer's morphology was acquired using SEM. The fabricated electrochromic cell's transmittance was measured using UV-Visible spectrometer and power source at 630 nm. As a result, the integrated electrochromic/DSSC hybrid system was successfully fabricated as an energy harvesting system. The fabricated electrochromic cell was self-operated using DSSC as a power source. In conclusion, the electrochromic cell was operated for 500 cycles, with 49% of maximum transmittance change. Also the photovoltaic efficiency for DSSC was measured to be 2.55% while the electrochromic cell on the integrated system had resulted in 26% of maximum transmittance change.

Simultaneous Wireless Information and Power Transfer in Two-hop OFDM Decode-and-Forward Relay Networks

  • Di, Xiaofei;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.152-167
    • /
    • 2016
  • This paper investigates the simultaneous wireless information and power transfer (SWIPT) for two-hop orthogonal frequency division multiplexing (OFDM) decode-and-forward (DF) relay network, where a relay harvests energy from radio frequency signals transmitted by a source and then uses the harvested energy to assist information transmission from the source to its destination. The power splitting receiver is considered at the relay. To explore the performance limit of such a SWIPT-enabled system, a resource allocation (RA) optimization problem is formulated to maximize the achievable information rate of the system, where the power allocation, the subcarrier pairing and the power splitting factor are jointly optimized. As the problem is non-convex and there is no known solution method, we first decompose it into two separate subproblems and then design an efficient RA algorithm. Simulation results demonstrate that our proposed algorithm can achieve the maximum achievable rate of the system and also show that to achieve a better system performance, the relay node should be deployed near the source in the SWIPT-enabled two-hop OFDM DF relay system, which is very different from that in conventional non-SWIPT system where the relay should be deployed at the midpoint of the line between the source and the destination.

Spatial Correlation-based Resource Sharing in Cognitive Radio SWIPT Networks

  • Rong, Mei;Liang, Zhonghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3172-3193
    • /
    • 2022
  • Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has attracted much interest since it can improve both the spectrum and energy efficiency of wireless networks. This paper focuses on the resource sharing between a point-to-point primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) containing a large number of cognitive users (CUs). The resource sharing optimization problem is formulated by jointly scheduling CUs and adjusting the transmit power at the cognitive base station (CBS). The effect of accessing CUs' spatial channel correlation on the possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly correlated to the information decoding primary receiver (IPR) and mutually near orthogonal are selected for simultaneous transmission to reduce the interference to the IPR and increase the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the EPR can harvest more energy from the CBS so that the energy utilization of the network can improve. Besides, zero-forcing precoding and power control are adopted to eliminate interference within the CRS and meet the transmit power constraints. Simulation results and analysis show that, compared with the existing CU selection methods, the proposed low-complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing capability of the network.

Performance Analysis of Wireless-powered Backscatter Communication with TSR-based Relay (TSR 릴레이를 활용한 무선 전력 Backscatter 통신 성능 분석)

  • Park, Si Woo;Park, Jae Hyun;Hwang, Kyu-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1164-1170
    • /
    • 2020
  • In this paper, we consider the wireless-powered backscatter communication which consists of a power beacon, a source, a relay, and a destination. For the proposed wireless-powered backscatter communication, the source transmits its signals to both the relay and the destination via a backscattering channel and the relay which has a rechargeable battery performs an energy harvesting as well as an information forwarding based on the time switching relay (TSR) protocol. Based on the decode-and-forward (DF) relay transmission, we investigate performances of the proposed system in terms of outage probability and transmission rate in which the exact performance analysis of outage probability is given. Finally, some numerical examples are given to verify our provided analytical results for different system conditions.

Pellet Geometric Effects on a Thermoelectric Generator with a High Power Electronic Component (고파워 전자소자에 부착된 열전생성기에 대한 pellet의 기학학적 구조가 미치는 영향)

  • Kim, K.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.36-42
    • /
    • 2012
  • 본 논문은 고파워 전자소자로부터 에너지를 수확하는 열전생성기의 성능에 pellet의 기학학적 구조가 미치는 영향들을 보고한다. 열경계저항을 포함하는 열전모델을 적용하여, 다양한 경계조건들과 열원의 열율들에 대해 pellet의 높이, pellet의 단면적, thermocouple의 수를 최적화 하고, 이처럼 최적화된 pellet의 기하학적 구조를 갖는 열전생성기의 성능과 일반적인 pellet으로 구성된 열전생성기의 전력생성성능과 효율이 예측되고 비교되어진다. 예측된 결과는 최적화된 pellet으로 구성된 열전생성기가 일반적인 pellet으로 구성된 열전생성기보다 2-10배까지 생성효율이 우수함을 보여준다. 최적화된 pellet으로 구성된 열전생성기와 일반적인 pellet으로 구성된 열전생성기의 열적성능도 예측되고 비교된다.

Architecture of the Solar-powered Sensor System for Distributed-storage Wireless Sensor Network (분산 저장형 센서 네트워크를 위한 태양 에너지 기반 센서 시스템의 구조)

  • Noh, Dong-Kun;Yoon, Ik-June
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.843-845
    • /
    • 2011
  • Due to the short lifetime of the battery-based sensor network, study on the environmental energy-harvesting sensor network is being performed widely. In this paper, we analyze the system-level requirements on the sensor node which is needed for the efficient solar-powered wireless sensor network for the target application. In addition, we explain how the HW/SW components of our real solar-powered sensor node can satisfy the requirements mentioned above.

  • PDF

Energy Perspective of Sugar Industries in Pakistan: Determinants and Paradigm Shift

  • Siddiqui, Muhammad Ayub;Shoaib, Adnan
    • Journal of Distribution Science
    • /
    • v.10 no.2
    • /
    • pp.7-17
    • /
    • 2012
  • The aim of this study is to empirically explore micro and macroeconomic factors affecting the Pakistani sugar industries and searching the energy potential of this industry, through the survey of literature. The empirical part has been explored by employing Vector Autoregression (VAR), Granger Causality tests and simultaneous equation models through quarterly data for the period of 1991q2-2008q4. The study also aims to devise policies for the development of sugar industries and identify its growing importance for the energy sector of Pakistan. Empirical tests applied on the domestic prices of sugar, domestic interest rates, and exchange rate, productive capacities of sugar mills, per capita income, world sugar prices on cultivable area and sugar production reveal very useful results. Results reveal an improvement of productive capacity of the sugar mills of Pakistan on account of increasing crushing capacity of this sector. Negative effect of rising wholesale prices on the harvesting area was also observed. Profit earnings of the sugar mills significantly increase with the rise of sugar prices but the system does not exist for the farming community to share the rising prices of sugar. The models indicate positive and significant effect of local prices of sugar on its volume of import. Another of the findings of this study positively relates the local sugar markets with the international prices of sugar. Additionally, the causality tests results reveal exchange rate, harvesting area and overall output of sugarcane to have significant effects on the local prices of sugar. Similarly, import of sugar, interest rate, per capita consumption of sugar, per capita national income and the international prices of sugar also significantly affect currency exchange rate of Pakistani rupee in terms of US$. The study also finds sugar as an essential and basic necessity of the Pakistani consumers. That is why there are no significant income and price effects on the per capita consumption of sugar in Pakistan. All the empirical methods reiterate the relationship of variables. Economic policy makers are recommended to improve governance and management in the production, stock taking, internal and external trading and distribution of sugar in Pakistan using bumper crop policies. Macroeconomic variables such as interest rate, exchange rate per capita income and consumption are closely connected with the production and distribution of sugar in Pakistan. The cartelized role of the sugar industries should also be examined by further studies. There is need to further explore sugar sector of Pakistan with the perspective of energy generation through this sector; cartelized sugar markets in Pakistan and many more other dimensions of this sector. Exact appraisal of sugar industries for energy generation can be done appropriately by the experts from applied sciences.

  • PDF