DOI QR코드

DOI QR Code

Development of Energy Harvesting Hybrid system consisted of Electrochromic Device and Dye-Sensitized Solar Cell using Nano Particle Deposition System

나노 입자 적층 시스템(NPDS)을 이용한 염료 감응 태양전지 - 전기 변색 통합 소자 및 에너지 하베스팅 시스템에 대한 연구

  • Kim, Kwangmin (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Kim, Hyungsub (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Choi, Dahyun (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Lee, Minji (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Park, Yunchan (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Chu, Wonshik (School of Mechanical and Aerospace Engineering Institute of Advanced Machinery and Design, Seoul National University) ;
  • Chun, Dooman (School of Mechanical Engineering, University of Ulsan) ;
  • Lee, Caroline Sunyong (Division of Materials and Chemical Engineering, Hanyang University)
  • Received : 2016.05.30
  • Accepted : 2016.06.05
  • Published : 2016.06.30

Abstract

In this study, Antimony Tin Oxide (ATO) ion storage layer and $TiO_2$ working electrode were fabricated using Nano Particle Deposition System. NPDS is the cutting-edge technology among the dry deposition methods. Accelerated particles are deposited on the substrate through the nozzle using NPDS. The thicknesses for coated layers were measured and layer's morphology was acquired using SEM. The fabricated electrochromic cell's transmittance was measured using UV-Visible spectrometer and power source at 630 nm. As a result, the integrated electrochromic/DSSC hybrid system was successfully fabricated as an energy harvesting system. The fabricated electrochromic cell was self-operated using DSSC as a power source. In conclusion, the electrochromic cell was operated for 500 cycles, with 49% of maximum transmittance change. Also the photovoltaic efficiency for DSSC was measured to be 2.55% while the electrochromic cell on the integrated system had resulted in 26% of maximum transmittance change.

본 연구에서는 나노 입자 적층 시스템(Nano Particle Deposition System, NPDS)을 이용하여 전기변색소자의 작동 전극을 적층하고 또한 염료 감응 태양전지의 반도체 층으로 사용되는 $TiO_2$층 및 전기변색소자의 이온 저장 층으로 사용되는 Antimony Tin Oxide(ATO) 층을 제작하였다. NPDS는 상온 건식 분말 적층법으로 노즐을 통하여 초음속으로 가속된 분말의 높은 에너지를 이용하여 기판에 적층하는 새로운 개념의 건식 적층 방법이다. 본 연구에서 코팅된 물질의 두께는 전기변색소자의 투과율에 영향을 끼치는데, 이는 표면 프로파일 측정법(surface profiling method)으로 측정하였으며, 적층된 $TiO_2$와 ATO 및 복합 층의 미세 구조를 확인하기 위해 SEM을 이용한 분석을 진행하였다. 한편 염료 감응 태양전지의 광 변환 효율은 솔라 시뮬레이터로 분석하였다. 또한 UV-visible spectrometer와 power source를 이용하여 630 nm 대역에서 전기 변색 소자가 갖는 투과도 변화와 낮은 전압에서의 작동 및 변색 횟수를 측정하였으며, 결과적으로 상기 과정을 거쳐 제작되고, 측정된 염료 감응 태양전지 - 전기 변색 통합 구조 소자를 자체 제작한 에너지 하베스팅 시스템과 연결하여 통합 구조 소자 내 태양전지의 전압 발생을 통해 자체 구동이 가능한 전기 변색 소자 시스템 제작에 성공하였다. NPDS를 통해 제작된 변색 소자의 경우, 최대 49%의 투과도 변화와 500회 작동에서 C-V curve를 유지함을 측정하여 성능과 내구성을 입증하였고, 통합 소자 내 태양 전지의 광 변환 효율은 최대 2.55%로 측정되었으며, 통합 소자 내 변색 소자의 경우 최대 26%의 투과도 변화를 보였다.

Keywords

References

  1. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, "Electrochromism and electrochromic devices", 1st ED., pp.25-27, Cambridge University, Cambridge (2007).
  2. C. G. Granqvist, "Handbook of Inorganic electrochromic materials", 2nd ED., pp.18-21, Elservier Science B.V, Amsterdam (2002).
  3. S. H. Jang. "Low-temperature formation of $TiO_2$ electrodes for the application of Dye-sensitized solar cell and Electrochromic device(in Kor.)", in Master. D. Thesis, pp.1-9, Inha University, Incheon (2010).
  4. H. S. Kim, S. K. Yang, S. H. Ahn and C. S. Lee, "Effect of particle size on various substrates for deposition of NiO film via nanoparticle deposition system", Thin Solid Films, 600, 109 (2016). https://doi.org/10.1016/j.tsf.2016.01.031
  5. B. K. Choi, S. H. Min, J. O. Kim, K. T. Kang and W. Y. Choi, "Fabrication of Photocatalytic $TiO_2$ Thin Film Using Aerosol Deposition Method", J. Microelectron. Packag. Soc., 11(4), 55 (2004).
  6. D. M. Chun, M. H. Kim, J. C. Lee and S. H. Ahn, "A Nanoparticle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions", International Journal of precision engineering and manufacturing, 9(1), 51 (2008).
  7. J. Jensen, H. F. Dam, J. R. Reynolds, A. L. Dyer and F. C. Krebs, "Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes", Journal of Polymer Science part B: Polymer Physics, 50, 536 (2012). https://doi.org/10.1002/polb.23038
  8. J. Jensen, M. Hosel, A. L. Dyer and F. C. Krebs, "Development and Manufacture of Polymer-Based Electrochromic Devices", Adv. Funct. Mater., 25, 2073 (2015). https://doi.org/10.1002/adfm.201403765
  9. J. Wu, "Morphology of Poly(3,4-ethylene dioxythiophene) (PEDOT) Thin Films, Crystals, Cubic Phases, Fibers and Tubes", in Ph.D. Thesis, pp.12-17, The university of Michigan, Ann Arbor (2011).
  10. S. H. Kim, J. Y. Choi and H. J. Chang, "Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer", J. Microelectron. Packag. Soc., 20(2), 39 (2013). https://doi.org/10.6117/kmeps.2013.20.2.039
  11. R. Baetens, B. P. Jelle and A. Gustavsen, "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review", Solar Energy Materials & Solar Cells, 94, 87 (2010). https://doi.org/10.1016/j.solmat.2009.08.021
  12. C. M. Lampert, "Durability of Electrochromic Switching Devices for Glazings", The international congress on optical science and engineering, 1272 (1990).