• 제목/요약/키워드: Energy total operation

검색결과 437건 처리시간 0.029초

건물용 열병합발전 설비를 중심으로 한 종합 에너지 시스템의 최적 일간 운전모형 수립에 관한 연구 (A Study on Daily Operation Model for Total Energy System Including Building Cogeneration, Ice Storage, Thermal and Electrical Storage Facilities)

  • 박종성;장승찬;심건보;김정훈;고요
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.724-726
    • /
    • 1996
  • In this paper, we propose an optimal daily operation model for the total energy system which includes cogeneration, thermal storage and electrical charger and ice storage facilities. Storing and utilizing the surplus thermal and electrical energy, the daily operation cost could be reduced and more efficient use of thermal energy could be achieved. The ice storage cooling system has a merit of reduce the electricity cost by time of day rate(peak/off-peak). And also, refrigerator can be down sized compare to the other cooling system From this model, operation costs of the sample cogeneration system with/without auxiliary facilities are obtained and compared to each other. In case study, the sensitivity of operating cost is simulated according to the variation of cogeneration production cost, electricity rate, etc.

  • PDF

사무소 건물에서 냉동기의 부분부하율 및 냉방 에너지 성능 특성 분석 (A Detailed Analysis of the Part Load Ratio and Cooling Energy Characteristics of Chiller Operation in an Office Building)

  • 서병모;유병호;이광호
    • 설비공학논문집
    • /
    • 제27권11호
    • /
    • pp.567-573
    • /
    • 2015
  • Commercial buildings account for significant portions of the total building energy in Korea, and thus, a variety of research on chiller operation has been carried out. However, most of the studies were carried out on the chiller itself, i.e., the part load ratio characteristics and the corresponding electricity energy consumption patterns were not analyzed in existing studies. In this study, the part load ratio and the operating characteristics of the vapor compression chiller were analyzed within an office building equipped with the conventional variable air volume system. As a result, significant portions of total operating hours, cooling load, and energy consumption turned out to be in the part load ratio range of 0 through 50%. Thus, energy consumption was significantly affected by the chiller COP at low part load conditions, indicating that chiller operation at the part load is an important factor in commercial buildings.

에너지 절감을 위한 건설장비 조합 최적화 방법 연구 (Construction Equipment Fleet Optimization for Saving Fuel Consumption)

  • 이창용;이홍철;이동은
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.198-199
    • /
    • 2015
  • Construction equipment is a major energy consumption source in construction projects. If 10% reduction of the diesel fuel usage is achieved in the construction industry, it may reduce 5% of the total energy usage. Energy saving operation is a major issue in equipment-intensive operations (e.g., earthmoving or paving operations). Identifying optimal equipment fleet is important measure to achieve low-energy consumption in those operations. This study presents a system which finds an optimal equipment fleet by computing the low-energy performance of earthmoving operations. It establishes construction operation model and compares numerous combinations using alternative equipment allocation plans. It implements sensitivity analysis that facilitates searching the lowest energy consumption equipment fleet by enumerating all cases.

  • PDF

소유권이 서로 다른 각종 보조설비가 연계된 종합 열병합발전 시스템의 일간운전계획 수립 (A Daily Operation Scheduling of Total Cogeneration System Connected with Auxiliary Devices of Different Posession Right)

  • 이종범;류승헌
    • 에너지공학
    • /
    • 제7권1호
    • /
    • pp.81-88
    • /
    • 1998
  • 본 논문은 전력회사 소유의 열병합발전소와 난방공사 소유의 보조열원설비들이 서로 연계되어 열에너지를 공급해 주고 있는 종합 열병합발전시스템에서, 보조설비들의 최적규모산정 및 일간 최적운전계획 수립 기법을 제안하였다. 최적규모산정과 운전계획수립은 국가적인 측면에서 총 연료비가 최소가 되는 관점에서 수립하였고, 이를 증명하기 위하여 계절별(춘계, 하계, 동계) 및 종류별(평일, 휴일, 연휴)로 나누어 각각의 시뮬레이션 결과로부터 최적의 규모 및 운전계획을 수립하였다. 본 연구결과는 자사의 이익이 증대되도록 계획을 수립할 공산이 큰 종합 열병합발전시스템에서 국가적 측면에서의 기법과 가이드라인을 제시하였으므로 현장에서의 많은 활용이 기대된다.

  • PDF

연료전지와 열병합 발전을 고려한 마이크로그리드의 최적 운용 (Optimal Microgrid Operation Considering Fuel Cell and Combined Heat and Power Generation)

  • 이지혜;이병하
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.596-603
    • /
    • 2013
  • The increase of distributed power generation is closely related to interest in microgird including renuable energy sources such as photovoltaic (PV) systems and fuel cell. By the growing interest of microgrid all over the world, many studies on microgrid operation are being carried out. Especially operation technique which is core technology of microgrid is to supply heat and electricity energy simultaneously. Optimal microgrid scheduling can be established by considering CHP (Combined Heat and Power) generation because it produce both heat and electricity energy and its total efficiency is high. For this reason, CHP generation in microgrid is being spotlighted. In the near future, wide application of microgrid is also anticipated. This paper proposes a mathematical model for optimal operation of microgrid considering both heat and power. To validate the proposed model, the case study is performed and its results are analyzed.

BEMS 데이터를 활용한 도서관 건물의 운전현황 분석 -준공 초기단계의 건물 에너지 성능 평가 (An Operation Status Analysis of Library Building using BEMS Data; Energy Performance Evaluation on Initial Stage of Completion)

  • 박성철;하주완;김환용;송영학
    • 한국건축친환경설비학회 논문집
    • /
    • 제12권6호
    • /
    • pp.669-679
    • /
    • 2018
  • Energy consumption savings in buildings should be reviewed in diverse areas such as air conditioning system and lighting responsible for cooling and heating, and energy management systems such as BAS (Building Automation System) and BEMS (Building Energy Management System) are introduced to improve energy consumption efficiency and to promote economic control of related facilities by integrated management of energy generated and consumption in buildings. The measured building of this study uses regenerative geothermal system. Measured values of heat pump and system COP were 4.7 and 4.2 respectively, and they were found to be higher 11.9% and 23.5% than rated values. As a result of analyzing the air conditioning and lighting energy from the first floor to the fourth floor performing the air conditioning, the second and third floors, which have a high frequency of use, are compared with the first and fourth floors 50% higher energy consumption ratio. On the other hand, the general heat storage system uses the nighttime power of the previous day to store heat and use it the next day. The total number of days of abnormal operation during the summer season is 61 days. The electricity cost corresponding to the abnormal operation is 1,840,641 KRW, and the normal operation using the nighttime power is 1,363,561 KRW, which is difference of 477,080 KRW, 35% increase in cost. We will utilize it as the main data of BEMS through analysis of winter operation characteristics as well as summer operation characteristics.

수치 계산을 통한 다목적 BIPV 시스템의 운전방법에 관한 연구 (A Study on the Operation Methods of Multipurpose BIPV System by Numerical Analysis)

  • 김의종;김헌중;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.49-55
    • /
    • 2006
  • The Multipurpose BIPV System(MBIPVS) was evaluated as an effective passive system through analyzing the thermal performance and the efficiency of PV power generation in the previous papers. To achieve the performance better, the operation method should be determined by considering physical conditions in each occasion. Thus, we cheesed the reference operation methods in each season set by the overview of the meteorological data for last 6 years, In-choen, and compared them with the various alternatives that we had made up with for improving thermal performance. The results from adopting various alternatives on MBIPVS showed that the appropriate operational model would be effective to the energy savings ; we could reduce the total loads 1,051.0[kWh] in summer and 108.9[kWh] in winter.

전력수급 종합시스템 운용현황 및 개선방안 (The Plan to Improve Highly Integrated Total Energy System)

  • 박시우;윤용범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.326-329
    • /
    • 2001
  • The main purpose of HITES(Highly Integrated Total Energy System) is to build and develop an integrated energy system for power system operational planning and analysis which consists of load forecast, economic generation schedule, stability analysis and relational database system. The HITES can be utilized to supply a stable electric power and operate KEPCO's power system facilities economically. This system was put into operation in 1999. This paper describes the present condition for operation of HITES and proposes the plan to improve this system after installation.

  • PDF

그린 철도운행을 위한 에너지 재활용 효율 분석 (Analysis of the energy recycling efficiency for railway operation)

  • 김동희;이철규
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 춘계학술대회
    • /
    • pp.159-166
    • /
    • 2012
  • Recently, by the whole world paradigm shift to "Low Carbon Green Growth", it is required to renovate National Transportation and Logistics System. Transportation accounts for 21% of the total energy consumption and 20% of the total $CO_2$ emission, and also places its main reliance on fossil fuels. From green point of view, electric railway system is superior to the other transportation alternatives, but also required to develop the innovative technologies for high efficiency and low energy consumption. In this paper, the concept of railway green operation system by regenerative synchronized driving is presented, including the numerical example and the estimated effect.

  • PDF

건물용 종합에너지시스템 구성요소의 최적 투자모형에 관한 연구 (A Study on the Optimal Planning Model of Building Integrated Energy System's Components)

  • 서상욱;박종성;장승찬;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.797-799
    • /
    • 1997
  • This paper presents an operation and planning model of integrated energy systems which consist of small scale cogeneration systems, thermal accumulator, ice storage and electrical energy storage systems. In the proposed planning model, an optimization of total cost which contains investment, operation, thermal shortage and salvage costs has carried out with the maximum principle based on the lifetime of each system component and unit price per capacity. From this model, optimal investment capacity per annum can be determined during the studied periods using the marginal costs according to the operation characteristics of each system component.

  • PDF