• 제목/요약/키워드: Energy structure optimization

검색결과 285건 처리시간 0.033초

General evolutionary path for fundamental natural frequencies of structural vibration problems: towards optimum from below

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.513-527
    • /
    • 1996
  • In this paper, both an approximate expression and an exact expression for the contribution factor of an element to the natural frequency of the finite element discretized system of a structure in general and a membrane in particular have been derived from the energy conservation principle and the finite element formulation of structural eigenvalue problems. The approximate expression for the contribution factor of an element is used to predict and determine the elements to be removed in an iteration since it depends only on the quantities associated with the old system in the iteration. The exact expression for the contribution factor of an element makes it possible to check whether the element is correctly removed at the end of an iteration because it depends on both the old system and the new system in the iteration. Thus, the combined use of the approximate expression and the exact expression allows a considerable number of elements to be removed in a single iteration so that the efficiency of the evolutionary structural optimization method can be greatly improved for solving the natural frequency optimization problem of a structure. A square membrane with different boundary supports has been chosen to investigate the general evolutionary path for the fundamental natural frequency of the structure. The related results indicated that if the objective of a structural optimization is to raise the fundamental natural frequency of the structure to an optimal value, the general evolutionary path during its optimization is that the elements are gradually removed along the direction from the area surrounded by the contour of the highest value to that surrounded by the contour of the lowest value.

Vortex Shedding을 고려한 Tower Flange 설계 (Tower Flange Design Considering Vortex Shedding)

  • 이현주;최원호;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.68-71
    • /
    • 2005
  • In the case of wind turbine design, Optimization of tower structure is very important because tower generally takes about $20\%$ of overall turbine cost. In this paper, we calculated wind loads considering vortex shedding, and optimized tower flange using the calculation results. For optimization, we used FEM to analyze structural strength of the flange and blade momentum theory to calculate wind loads.

  • PDF

Three-dimensional thermal-hydraulics/neutronics coupling analysis on the full-scale module of helium-cooled tritium-breeding blanket

  • Qiang Lian;Simiao Tang;Longxiang Zhu;Luteng Zhang;Wan Sun;Shanshan Bu;Liangming Pan;Wenxi Tian;Suizheng Qiu;G.H. Su;Xinghua Wu;Xiaoyu Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4274-4281
    • /
    • 2023
  • Blanket is of vital importance for engineering application of the fusion reactor. Nuclear heat deposition in materials is the main heat source in blanket structure. In this paper, the three-dimensional method for thermal-hydraulics/neutronics coupling analysis is developed and applied for the full-scale module of the helium-cooled ceramic breeder tritium breeding blanket (HCCB TBB) designed for China Fusion Engineering Test Reactor (CFETR). The explicit coupling scheme is used to support data transfer for coupling analysis based on cell-to-cell mapping method. The coupling algorithm is realized by the user-defined function compiled in Fluent. The three-dimensional model is established, and then the coupling analysis is performed using the paralleled Coupling Analysis of Thermal-hydraulics and Neutronics Interface Code (CATNIC). The results reveal the relatively small influence of the coupling analysis compared to the traditional method using the radial fitting function of internal heat source. However, the coupling analysis method is quite important considering the nonuniform distribution of the neutron wall loading (NWL) along the poloidal direction. Finally, the structure optimization of the blanket is carried out using the coupling method to satisfy the thermal requirement of all materials. The nonlinear effect between thermal-hydraulics and neutronics is found during the blanket structure optimization, and the tritium production performance is slightly reduced after optimization. Such an adverse effect should be thoroughly evaluated in the future work.

충돌에너지 흡수효율 최대화를 위한 자동차 사이드 멤버 최적 설계에 관한 연구 (A Study on the Optimum Design of the Automotive Side Member to Maximize the Crash Energy Absorption Efficiency)

  • 이정환;정낙탁;서명원
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1179-1185
    • /
    • 2013
  • In this study, the design optimization of the automotive side member is performed to maximize the crash energy absorption efficiency per unit weight. Design parameters which seriously influence on the frontal crash performance are selected through the sensitivity analysis using the Plackett-Burman design method. And also the design variables, which are determined from the sensitivity analysis, are optimized by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using micro-genetic algorithm. The proposed optimization technique shows that the automotive side member structure can be designed considering the frontal crash performance.

다진동수를 고려한 평면구조물의 위상최적화 (Topology Optimization of Plane Structures with Multi-Frequency Cases)

  • 이상진;배정은;박경임
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.233-238
    • /
    • 2006
  • 이 논문은 여러 개의 진동수를 동시에 고려할 수 있는 위상최적화기법을 제공하고 이를 평면구조물에 적용하여 최적위상을 도출하고 그 결과를 기술하였다. 본 연구에서는 모드변형에너지를 최소화하고자하는 목적함수로 가정하고 구조물의 초기 부피를 제약함수로 사용하였다. 물질내부에 존재하는 구멍의 크기를 조절하기 위하여 최적정기준법을 바탕으로 한 크기조절 알고리듬을 도입하였다. 수치해석결과로 부터 제시된 위상최적화기법은 구조물의 기본고유진동수를 효과적으로 최대화하면서 동시에 고차의 진동수에 대한 영향도 최적위상에 고려할 수 있는 것으로 나타났다.

  • PDF

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.

철도 차량 전두부 충돌 피해 저감을 위한 Protective shell frame의 위상 최적화에 관한 연구 (The study on Topology Optimization for Crashworthiness enhancement in Protective shell frame of Rolling Stock leading-cab)

  • 김현준;김세훈;정현승;권태수;서명원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.138-143
    • /
    • 2007
  • The leading-cab (high energy absorption area) of rolling stock directly is impacted on the frontal crash unlike other cabs. Thus, leading-cab has a structurally complex shape to solve getting concentrated loads. However, in order to enhance structural performance and to achieve the weight reduction of cab, changing the sizes and adjusting the distance of members do not take an effective result. Therefore, in design phase, to find the material arrangement which helps structural capacity be better should be done. This research applies the topology optimization to concept design of protective shell frame on strategy of crush energy absorption with considering pressure and vertical loads acting on the principal part of leading-cab. In this research, topology optimization method focuses on structural design, and which yields optimal material arrangement under given loads and boundary conditions using density method which has the density of material as design variables. Finally, this research presents optimal material arrangement and structure of protective shell frame on given loads with applying topology optimization.

  • PDF

Semi-analytical solutions for optimal distributions of sensors and actuators in smart structure vibration control

  • Jin, Zhanli;Yang, Yaowen;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • 제6권7호
    • /
    • pp.767-792
    • /
    • 2010
  • In this paper, the optimal design of vibration control system for smart structures has been investigated semi-analytically via the optimization of geometric parameters like the placements and sizes of piezoelectric sensors and actuators (S/As) bonded on the structures. The criterion based on the maximization of energy dissipation was adopted for the optimization of the control system. Based on the sensing and actuating equations, the total energy stored in the system which is used as the objective function was analytically derived with design variables explicitly presented. Two cases of single and combined vibration modes were addressed for a simply supported beam and a simply supported cylindrical shell. For single vibration mode, the optimal distributions of the piezoelectric S/As could be obtained analytically. However, the Sequential Quadratic Programming (SQP) method has to be employed to solve those which violated the prescribed constraints and to solve the case of combined vibration modes. The results of three examples, which include a simply supported beam, a simply supported cylindrical shell and a simply supported plate, showed good agreement with those obtained by the Genetic Algorithm (GA) method. Moreover, in comparison with the GA method, the proposed method is more effective in obtaining better optimization results and is much more efficient in terms of computation time.

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.

Multi-objective optimization of submerged floating tunnel route considering structural safety and total travel time

  • Eun Hak Lee;Gyu-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.323-334
    • /
    • 2023
  • The submerged floating tunnel (SFT) infrastructure has been regarded as an emerging technology that efficiently and safely connects land and islands. The SFT route problem is an essential part of the SFT planning and design phase, with significant impacts on the surrounding environment. This study aims to develop an optimization model considering transportation and structure factors. The SFT routing problem was optimized based on two objective functions, i.e., minimizing total travel time and cumulative strains, using NSGA-II. The proposed model was applied to the section from Mokpo to Jeju Island using road network and wave observation data. As a result of the proposed model, a Pareto optimum curve was obtained, showing a negative correlation between the total travel time and cumulative strain. Based on the inflection points on the Pareto optimum curve, four optimal SFT routes were selected and compared to identify the pros and cons. The travel time savings of the four selected alternatives were estimated to range from 9.9% to 10.5% compared to the non-implemented scenario. In terms of demand, there was a substantial shift in the number of travel and freight trips from airways to railways and roadways. Cumulative strain, calculated based on SFT distance, support structure, and wave energy, was found to be low when the route passed through small islands. The proposed model helps decision-making in the planning and design phases of SFT projects, ultimately contributing to the progress of a safe, efficient, and sustainable SFT infrastructure.