• Title/Summary/Keyword: Energy salt

Search Result 725, Processing Time 0.025 seconds

Study of Hydration Reaction Characteristics of Inorganic Salts for Chemical Cold Storage and Method of Enhancement of Heat and Mass Transfer (화학축냉용 무기염들의 수화반응 및 열 및 물질전달 향상방안)

  • 김상욱;한종훈;황용준;이건홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • An air-conditioning system based on the chemical heat storage principle was considered. $H_2O$ was chosen as the reaction gas and the working fluid as well. Na$_2$S, CaCl$_2$, MnCl$_2$, BaCl$_2$, MgCl$_2$, Fe$_2$(SO$_4$)$_3$ and MnSO$_4$ were tested as the solid reactants by using Cahn pressure balance. Na$_2$S was superior to other salts in respect of high capability of absorption of water gas, 5 moles of $H_2O$ per unit mole of Na$_2$S, and adequate temperature of adsorption, $65^{\circ}C$ at 7torr, and of desorption, 13$0^{\circ}C$ at 76torr. Clausius-Clapeyron diagram of Na$_2$S was obtained via adsorption experiments at several vapor pressures of water gas. To enhance heat and mass transfer characteristics, usually below 1W/m K, of the reactor bed of general adsorption systems, expanded graphite block was adapted as the support of Na$_2$S salt. Expanded graphite blocks had thermal conductivity values of 20~80W/mK with respect to 100~400kg/㎥ of block bulk density. Permeability values of expanded graphite blocks were 10$^{-13}$ ~ 10$^{-14}$ $m^2$ with respect to 100~300kg/㎥ of block bulk density showing highly decreasing values of permeability, below 10$^{-l4}$$m^2$, in the range of above 150kg/㎥ of block bulk density.y.

  • PDF

A Review on Lithium Recovery by Membrane Process (멤브레인 공정에 의한 리튬 회수에 대한 총설)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.315-326
    • /
    • 2021
  • Lithium ion battery (LIB) demands increase every year globally to reduce the burden on fossil fuels. LIBs are used in electric vehicles, stationary storage systems and various other applications. Lithium is available in seawater, salt lakes, and brines and its extraction using environmentally friendly and inexpensive methods will greatly relieve the pressure in lithium mining. Membrane separation processes, mainly nanofiltration (NF), is an effective way for the separation of lithium metal from solutions. Electrodialysis and electrolysis are other separation processes used for lithium separation. The process of reverse osmosis (RO) is already a well-established method for the desalination of seawater; therefore, modifying RO membranes to target lithium metals is an excellent alternative method in which the only bottleneck is the interfering presence of other metal elements in the solution. Selectively removing lithium by finding or developing suitable NF membranes can be challenging, but it is nonetheless an exciting area of research. This review discusses in detail about lithium recovery via nanofiltration, electrodialysis, electrolysis and other processes.

Comparison of Parallel Computation Performances for 3D Wave Propagation Modeling using a Xeon Phi x200 Processor (제온 파이 x200 프로세서를 이용한 3차원 음향 파동 전파 모델링 병렬 연산 성능 비교)

  • Lee, Jongwoo;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • In this study, we simulated 3D wave propagation modeling using a Xeon Phi x200 processor and compared the parallel computation performance with that using a Xeon CPU. Unlike the 1st generation Xeon Phi coprocessor codenamed Knights Corner, the 2nd generation x200 Xeon Phi processor requires no additional communication between the internal memory and the main memory since it can run an operating system directly. The Xeon Phi x200 processor can run large-scale computation independently, with the large main memory and the high-bandwidth memory. For comparison of parallel computation, we performed the modeling using the MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) libraries. Numerical examples using the SEG/EAGE salt model demonstrated that we can achieve 2.69 to 3.24 times faster modeling performance using the Xeon Phi with a large number of computational cores and high-bandwidth memory compared to that using the 12-core CPU.

Recent Progress in Patterned Membranes for Membrane-Based Separation Process (분리공정을 위한 패턴화 멤브레인 최근 연구 동향)

  • Aung, Hein Htet;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.170-183
    • /
    • 2021
  • Fouling has continued to be a problem that hinders the effectiveness of membrane properties. To solve this problem of reducing fouling effects on membrane surface properties, different and innovative types of membrane patterning has been proposed. This article reviews on the progress of patterned membranes and their separation process concerning the fouling effects of membranes. The types of separation processes that utilize the maximum effectiveness of the patterned membranes include nanofiltration (NF), reverse osmosis (RO), microfiltration (MF), ultrafiltration (UF), and pervaporation (PV). Using these separation processes have shown and prove to have a major effect on reducing fouling effects, and in addition, they also add beneficial properties to the patterned membranes. Each patterned membrane and their separation processes gave notable results in threshold towards flux, salt rejections, hydrophilicity and much more, but there are also some unsolved cases to be pointed out. In this review, the effects of patterned membrane for separation processes will be discussed.

Effect of hydroxybutyric-acid on lipid bilayers with respect to layer phase

  • Lee, Gaeul;Park, Jin-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.720-726
    • /
    • 2022
  • The behavior changes of the lipid bilayer, induced by the hydroxybutyric-acid incorporation, were investigated with respect to each phase of the layer using fluorescence intensity change. Spherical phospholipid bilayers, called vesicles, were prepared using an emulsion technique. Only in the aqueous inside of the vesicles was encapsulated 8-Aminonaphthalene-1,3,6-trisulfonic-acid-disodium-salt(ANTS). p-Xylene-bis-N-pyridinium-bromide(DPX) was included as a quencher only outside of the vesicles. The fluorescence scale was calibrated with the ANTS-encapsulated vesicles in DPX-dispersed-buffer taken as 100% and the mixture of ANTS and DPX in the buffer as 0%. Hydroxybutyric-acid addition into the vesicle solution led the change in the bilayer. The change was found to be related to the phase of each layer according to the ratio of hydroxybutyric-acid to lipid. These results seem to depend on the stability of the vesicles, due to the osmotic and volumetric effects on the arrangement in both head-group and tail-group.

A study on the synthesis of a cathode active material precursor from a waste lithium secondary battery (폐리튬이차전지 스크랩 재활용을 통한 양극활물질 전구체 합성 연구)

  • Kim, BoRam;Kim, Dae-Weon;Kim, Tae-heon;Lee, Jae-Won;Jung, Hang-chul;Han, Deokhyun;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2022
  • A metal salt solution was prepared from valuable metals (Ni, Co, Mn) recovered from a scrap of waste lithium secondary batteries, and an NCM811 precursor was synthesized from the solution. The effect on precursor formation according to reaction time was confirmed by SEM, PSA, and ICP analysis. Based on the analysis results, the electrochemical properties of the synthesized NCM811 precursor and the commercial NCM811 precursor were investigated. The Galvano charge-discharge cycle, rate performance, and Cycle performance were compared, and as a result, there was no significant difference from commercial precursors.

Synthesis of Energetic Metal-free Cyclo-pentazolate Salts Through Efficient Preparation Method (효율적인 제조 방법을 통한 비금속-펜타졸 염화합물의 합성)

  • Kown, Kuktae;Kim, Seunghee;Lee, Sojung;Yoo, Hae-Wook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.66-73
    • /
    • 2021
  • The development of excellent high-energy materials has progressed in the direction of synthesizing compounds with high nitrogen content, ultimately oriented toward the form of polynitrogen. As cyclo-N5-, a type of polynitrogen, is synthesized as sodium pentazolate(NaN5) and the results of various metal and non-metal compounds have been studied, the usage of polynitrogen compounds is attracting attention. However, since the known synthesis and purification method of NaN5 are very extreme and complicated, it is essential to improve the process in order to increase the utility of the pentazolate compounds in the future. In this study, only a simple filtration method was applied to purify the NaN5, and based on this, two non-metal pentazolate salt compounds were successfully synthesized.

Sintering Behavior of Borate-Based Glass Ceramic Solid Electrolytes for All-Solid Batteries (전고체전지용 붕산염 유리 세라믹 고체 전해질의 조성비에 따른 소결 특성 연구)

  • Jeong Min Lee;Dong Seok Cheong;Sung Hyun Kang;Tirtha Raj Acharya;Eun Ha Choi;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.445-450
    • /
    • 2024
  • The expansion of lithium-ion battery usage beyond portable electronic devices to electric vehicles and energy storage systems is driven by their high energy density and favorable cycle characteristics. Enhancing the stability and performance of these batteries involves exploring solid electrolytes as alternatives to liquid ones. While sulfide-based solid electrolytes have received significant attention for commercialization, research on amorphous-phase glass solid electrolytes in oxide-based systems remains limited. Here, we investigate the glass transition temperatures and sintering behaviors by changing the molecular ratio of Li2O/B2O3 in borate glass comprising Li2O-B2O3-Al2O3 system. The glass transition temperature is decreasing as increasing the amount of Li2O. When we sintered at 450℃, just above the glass transition temperature, the samples did not consolidate well, while the proper sintered samples could be obtained under the higher temperature. We successfully obtained the borate glass ceramics phases by melt-quenching method, and the sintering characteristics are investigated. Future studies could explore optimizing ion conductivity through refining processing conditions, adjusting the glass former-to-modifier ratio, and incorporating additional Li salt to enhance the ionic conductivity.

The Long-term Variations of Water Qualities in the Saemangeum Salt-Water Lake after the Sea-dike Construction (방조제 체절이후 새만금호의 장기적인 수질변화)

  • Jeong, Yong Hoon;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.51-63
    • /
    • 2015
  • In order to investigation long-term variations of water qualities in the Saemangeum Salt-Water Lake formed after the sea-dike construction, the survey has carried out over 40 time from 2002 to 2010. The decreased salinity in surface water immediately after the dike construction has maintained on equal terms for years. After the dike construction, the early concentration of SPM in surface water has decreased but then it showed the tendency to move up and down due to the changes of water level in the lake. The elevated concentration of Chl-a in surface water initially after the dike construction was kept at the same conditions for years. The concentration of DIN in surface water has not changed before and shortly after the dike construction. However, the concentration of $NH_4-N$ in surface water has increased steadily after the dike construction. Consequently the concentration of DIN in the lake water after years has raised compared to pre-dike construction. The reduced concentration of DIP in surface water soon after the dike construction has increased after years as well as $NH_4-N$ due to the accumulation of organic matter to inside lake. Unlike with the unvaried $NO_3-N$, the concentration of DISi in surface water after the dike construction has immediately increased and maintained the enhanced level indicating the supply from other sources except the freshwater. Since the dike construction, the spatial characteristics of water quality was divided river sides and rest of the lake markedly. Stratification of river sides was more strong than the dike sides. In the warm seasons, hypoxia causing the release of nutrients and metals from sediment was observed downward about 1 m from surface of river sides. We strongly suggest to make some urgent measure to prevent low dissolved oxygen condition in the bottom layer of the river sides.

Development and Evaluation of Bipolar Plates Coated with Noble Metals for Polymer Electrolyte Membrane Fuel Cells (Noble Metal이 코팅된 금속분리판 개발 및 성능 평가)

  • Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Kim, Minsung;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The coated metallic bipolar plates are getting attractive due to their good feasibility of mass production, low contact resistance, high electrical/thermal conductivity, low gas permeability and good mechanical strength comparing with graphite materials. Yet, metallic bipolar plates for polymer electrolyte membrane(PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance between metallic bipolar plate and gas diffusion layer, good mechanical robustness, low mechanical and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrate by electroplating. The coated metallic bipolar plates are investigated with an electrochemical polarization tests, salt dipping tests, adhesion tests for corrosion resistance and then the contact resistance was measured. The results showed that the selective samples electroplated with optimized method, satisfied the DOE target for corrosion resistance and contact resistance, and also were very stabilized in the typical fuel cell environments in the long-term.

  • PDF