Study of Hydration Reaction Characteristics of Inorganic Salts for Chemical Cold Storage and Method of Enhancement of Heat and Mass Transfer

화학축냉용 무기염들의 수화반응 및 열 및 물질전달 향상방안

  • 김상욱 (포항공과대학교 화학공학과) ;
  • 한종훈 (포항공과대학교 화학공학) ;
  • 황용준 (포항공과대학교 화학공학) ;
  • 이건홍 (포항공과대학교 화학공학과)
  • Published : 1999.05.01

Abstract

An air-conditioning system based on the chemical heat storage principle was considered. $H_2O$ was chosen as the reaction gas and the working fluid as well. Na$_2$S, CaCl$_2$, MnCl$_2$, BaCl$_2$, MgCl$_2$, Fe$_2$(SO$_4$)$_3$ and MnSO$_4$ were tested as the solid reactants by using Cahn pressure balance. Na$_2$S was superior to other salts in respect of high capability of absorption of water gas, 5 moles of $H_2O$ per unit mole of Na$_2$S, and adequate temperature of adsorption, $65^{\circ}C$ at 7torr, and of desorption, 13$0^{\circ}C$ at 76torr. Clausius-Clapeyron diagram of Na$_2$S was obtained via adsorption experiments at several vapor pressures of water gas. To enhance heat and mass transfer characteristics, usually below 1W/m K, of the reactor bed of general adsorption systems, expanded graphite block was adapted as the support of Na$_2$S salt. Expanded graphite blocks had thermal conductivity values of 20~80W/mK with respect to 100~400kg/㎥ of block bulk density. Permeability values of expanded graphite blocks were 10$^{-13}$ ~ 10$^{-14}$ $m^2$ with respect to 100~300kg/㎥ of block bulk density showing highly decreasing values of permeability, below 10$^{-l4}$$m^2$, in the range of above 150kg/㎥ of block bulk density.y.

Keywords