DOI QR코드

DOI QR Code

Sintering Behavior of Borate-Based Glass Ceramic Solid Electrolytes for All-Solid Batteries

전고체전지용 붕산염 유리 세라믹 고체 전해질의 조성비에 따른 소결 특성 연구

  • Jeong Min Lee (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Dong Seok Cheong (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Sung Hyun Kang (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Tirtha Raj Acharya (Department of Electrical and Biological Physics, Kwangwoon University) ;
  • Eun Ha Choi (Department of Electrical and Biological Physics, Kwangwoon University) ;
  • Weon Ho Shin (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이정민 (광운대학교 전자재료공학과) ;
  • 정동석 (광운대학교 전자재료공학과) ;
  • 강성현 (광운대학교 전자재료공학과) ;
  • ;
  • 최은하 (광운대학교 전자바이오물리학과) ;
  • 신원호 (광운대학교 전자재료공학과)
  • Received : 2024.05.07
  • Accepted : 2024.05.14
  • Published : 2024.07.01

Abstract

The expansion of lithium-ion battery usage beyond portable electronic devices to electric vehicles and energy storage systems is driven by their high energy density and favorable cycle characteristics. Enhancing the stability and performance of these batteries involves exploring solid electrolytes as alternatives to liquid ones. While sulfide-based solid electrolytes have received significant attention for commercialization, research on amorphous-phase glass solid electrolytes in oxide-based systems remains limited. Here, we investigate the glass transition temperatures and sintering behaviors by changing the molecular ratio of Li2O/B2O3 in borate glass comprising Li2O-B2O3-Al2O3 system. The glass transition temperature is decreasing as increasing the amount of Li2O. When we sintered at 450℃, just above the glass transition temperature, the samples did not consolidate well, while the proper sintered samples could be obtained under the higher temperature. We successfully obtained the borate glass ceramics phases by melt-quenching method, and the sintering characteristics are investigated. Future studies could explore optimizing ion conductivity through refining processing conditions, adjusting the glass former-to-modifier ratio, and incorporating additional Li salt to enhance the ionic conductivity.

Keywords

Acknowledgement

본 연구는 산업통상자원부 한국산업기술진흥원 산업혁신인재성장지원사업(P0012451), 과학기술정보통신부 한국연구재단 기초연구사업(RS-2023-00222124, NRF-2022R1A2C1010617) 및 2024년도 광운대학교 우수연구자 지원 사업의 지원을 받아 수행된 연구임.

References

  1. J. S. Kim, G. Yoon, S. Kim, S. Sugata, N. Yashiro, S. Suzuki, M. J. Lee, R. Kim, M. Badding, Z. Song, J. M. Chang, and D. Im, Nat. Commun., 14, 782 (2023). doi: https://doi.org/10.1038/s41467-023-36401-7 
  2. L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y. C. Cao, F. Wei, and L. Mai, Joule, 2, 1991 (2018). doi: https://doi.org/10.1016/j.joule.2018.07.009 
  3. K. Rai and S. Kundu, Ceram. Int., 46, 23695 (2020). doi: https://doi.org/10.1016/j.ceramint.2020.06.143 
  4. J. A. Dias, S. H. Santagneli, and Y. Messaddeq, J. Phys. Chem. C, 124, 26518 (2020). doi: https://doi.org/10.1021/acs.jpcc.0c07385 
  5. M. Henriksen, K. Vaagsaether, J. Lundberg, S. Forseth, and D. Bjerketvedt, J. Power Sources, 506, 230141 (2021). doi: https://doi.org/10.1016/j.jpowsour.2021.230141 
  6. M. Balaish, J. C. Gonzalez-Rosillo, K. J. Kim, Y. Zhu, Z. D. Hood, and J.L.M. Rupp, Nat. Energy, 6, 227 (2021). doi: https://doi.org/10.1038/s41560-020-00759-5 
  7. B. Kang, H. Park, S. Woo, M. Kang, and A. Kim, Ceramist, 21, 349 (2018). doi: https://doi.org/10.31613/ceramist.2018.21.4.04 
  8. Y. Chen, Y. Zhao, F. Liu, M. Ding, J. Wang, J. Jiang, P. Boulet, and M. C. Record, Molecules, 28, 229 (2022). doi: https://doi.org/10.3390/molecules28010229 
  9. Z. Zhang, Y. Shao, B. Lotsch, Y. S. Hu, H. Li, J. Janek, L. F. Nazar, C. W. Nan, J. Maier, M. Armand, and L. Chen, Energy Environ. Sci., 11, 1945 (2018). doi: https://doi.org/10.1039/C8EE01053F 
  10. S. Chen, D. Xie, G. Liu, J. P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, and X. Yao, Energy Storage Mater., 14, 58 (2018). doi: https://doi.org/10.1016/j.ensm.2018.02.020 
  11. M. Shoji, E. J. Cheng, T. Kimura, and K. Kanamura, J. Phys. D: Appl. Phys., 52, 103001 (2019). doi: https://doi.org/10.1088/1361-6463/aaf7e2 
  12. R. C. Agrawal and G. P. Pandey, J. Phys. D: Appl. Phys., 41, 223001 (2008). doi: https://doi.org/10.1088/0022-3727/41/22/223001 
  13. R. Wei, S. Chen, T. Gao, and W. Liu, Nano Sel., 2, 2256 (2021). doi: https://doi.org/10.1002/nano.202100110 
  14. Y. Wu, S. Wang, H. Li, L. Chen, and F. Wu, InfoMat, 3, 827 (2021). doi: https://doi.org/10.1002/inf2.12224 
  15. J. Kawamura, R. Asayama, N. Kuwata, and O. Kamishima, Phys. Solid State Ionics, 81, 193 (2006). 
  16. A. Bunde, K. Funke, and M. D. Ingram, Solid State Ionics, 105, 1 (1998). doi: https://doi.org/10.1016/S0167-2738(97)00444-X 
  17. R. H. Lee, D. W. Lee, J. K. Lee, K. N. Kim, J. R. Yoon, and S. H. Lee, J. Energy Storage, 77, 110018 (2024). doi: https://doi.org/10.1016/j.est.2023.110018 
  18. M. A. Salorkar and V. K. Deshpande, Phys. B, 627, 413590 (2022). doi: https://doi.org/10.1016/j.physb.2021.413590 
  19. H. Sun, S. Kang, and L. Cui, Biochem. Eng. J., 454, 140375 (2023). doi: https://doi.org/10.1016/j.cej.2022.140375 
  20. A. Chandra, A. Bhatt, and A. Chandra, J. Mater. Sci. Technol., 29, 193 (2013). doi: https://doi.org/10.1016/j.jmst.2013.01.005 
  21. A. M. Glass and K. Nassau, J. Appl. Phys., 51, 3756 (1980). doi: https://doi.org/10.1063/1.328164 
  22. R. C. Agrawal and R. K. Gupta, J. Mater. Sci., 34, 1131 (1999). doi: https://doi.org/10.1023/A:1004598902146 
  23. M. Shaalan, G. El-Damrawi, A. Hassan, and M. H. Misbah, J. Mater. Sci.: Mater. Electron., 32, 12348 (2021). doi: https://doi.org/10.1007/s10854-021-05866-x 
  24. M. Chen, F. He, J. Shi, J. Xie, H. Yang, and P. Wan, J. Eur. Ceram. Soc., 39, 4988 (2019). doi: https://doi.org/10.1016/j.jeurceramsoc.2019.07.032 
  25. K. I. Cho, S. H. Lee, K. H. Cho, D. W. Shin, and Y. K. Sun, J. Power Sources, 163, 223 (2006). doi: https://doi.org/10.1016/j.jpowsour.2006.02.011 
  26. V. D. Raut and A. V. Deshpande, AIP Conf. Proc., 2104, 020028 (2019). doi: https://doi.org/10.1063/1.5100396 
  27. T. Minami, J. Non-Cryst. Solids, 73, 273 (1985). doi: https://doi.org/10.1016/0022-3093(85)90353-9 
  28. Y. I. Lee, J. H. Lee, S. H. Hong, and Y. Park, Solid State Ionics, 175, 687 (2004). doi: https://doi.org/10.1016/j.ssi.2004.08.024 
  29. W. Li and S. H. Garofalini, Solid State Ionics, 166, 365 (2004). doi: https://doi.org/10.1016/j.ssi.2003.11.015 
  30. R. K. Hona, M. Guinn, U. S. Phuyal, S. Sanchez, and G. S. Dhaliwal, J. Mater. Sci. Chem. Eng., 11, 31 (2023). doi: https://doi.org/10.4236/msce.2023.117004 
  31. S. S. Gundale, V. V. Behare, and A. V. Deshpande, Solid State Ionics, 298, 57 (2016). doi: https://doi.org/10.1016/j.ssi.2016.11.002