• Title/Summary/Keyword: Energy generation

Search Result 4,968, Processing Time 0.031 seconds

WEB-BASED MONITORING FOR PHOTOVOLTAIC/WIND POWER GENERATION FACILITIES (태양광/풍력 발전설비의 웹기반 모니터링기술)

  • Park, Se-Jun;Yoon, Jeong-Phil;Cha, In-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.33-37
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested But, hybrid generation system cannot always generate stable output due to the varying weather condition So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

  • PDF

Real-Time Peak Shaving Algorithm Using Fuzzy Wind Power Generation Curves for Large-Scale Battery Energy Storage Systems

  • Son, Subin;Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • This paper discusses real-time peak shaving algorithms for a large-scale battery energy storage system (BESS). Although several transmission and distribution functions could be implemented for diverse purposes in BESS applications, this paper focuses on a real-time peak shaving algorithm for an energy time shift, considering wind power generation. In a high wind penetration environment, the effective load levels obtained by subtracting the wind generation from the load time series at each long-term cycle time unit are needed for efficient peak shaving. However, errors can exist in the forecast load and wind generation levels, and the real-time peak shaving operation might require a method for wind generation that includes comparatively large forecasting errors. To effectively deal with the errors of wind generation forecasting, this paper proposes a real-time peak shaving algorithm for threshold value-based peak shaving that considers fuzzy wind power generation.

Development of Black Box for Home Battery Energy Storage System Connected with Solar Energy Generation (태양광발전 연계 가정용 배터리 에너지저장장치의 블랙박스 개발)

  • Kim, Sang-Dong;Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1295-1302
    • /
    • 2016
  • In this paper, a black box, which is provided the reliability and user safety of home battery energy storage system connected with solar energy generation, is developed. In the developed scheme, a status and diagnosis data of battery management system, power conditioning system, solar energy generation and grid is measured. This status and diagnosis data is stored and displayed in the developed black box. In addition, this status and diagnosis data is stored and displayed in a monitoring system and a smart phone of user. A performance evaluation of the developed black box is carried out using emulator of home battery energy storage system connected with solar energy generation. Consequently, the developed black box is proved its superiority of the reliability and user safety.

The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System (독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구)

  • Park, Se-Jun;Yoon, Jeong-Phil;Kang, Byung-Bog;Yoon, Hyung-Sang;Cha, In-Su;Lim, Jung-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

A Study on the Power Generation Compared to the Capacity of Power Generation Facilities by Energy Sources in Summer Season (하절기의 에너지원별 발전설비용량 대비 발전량에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.36-40
    • /
    • 2019
  • In this study, we compared the operational rates of natural gas, coal, nuclear power and renewable energy based on the data of power generation and power generation facilities produced in summer season(from June to August) during the last four years(2015~2018). Nuclear power and coal power, which are responsible for basic power generation, were guaranteed to be economical as the actual generation capacity remained 60% higher than the cost of power generation. On the other hand, natural gas generation and new renewable energy generation have a very low actual operation rate of 29.5% and 27.3% compared to investments in power generation facilities, making it difficult to lower the cost of power generation. However, coal generation has structural problems in terms of greenhouse gas, fine dust. On the other hand, natural gas generation is relatively low and even though it is safe, it is difficult to secure economic feasibility as it is bound by a peak power system. Therefore, it is only possible to achieve balanced development of energy sources when there is a change in the development policy.

Generation Rescheduling Priority using Transient Energy Margin Sensitivity (과도에너지 마진의 감도를 이용한 발전력 재배분의 Priority)

  • Kim, Kyu-Ho;Kim, Soo-Nam;Rhee, Sang-Bong;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1086-1090
    • /
    • 2011
  • This paper presents a method to evaluate generation rescheduling priority using transient energy margin sensitivity for power system operation. A change in any of the functional parameters obviously causes a change in the energy margin. Especially the energy margin sensitivity is evaluated for change with respect to generation. For a given contingency, the energy margin is computed and the respective sensitivities are also computed. It is possible to rank the sensitivities and thereby determine the generators which will affect the energy margin most and hence affect the stability (instability) of the system. The sign of the sensitivity indicates the direction of change in generation for a given change in energy margin.

Modified Design of Floating Type Photovoltaic Energy Generation System (부유식 태양광 에너지 발전시설의 수정설계)

  • Lee, Young-Geun;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • We had designed and constructed floating type photovoltaic energy generation system. In this paper, we present the result of investigations pertaining to the development of links between unit modules of the floating type photovoltaic energy generation system. The link system installed between the unit modules is made of pultruded FRP, tire, and polyethilene synthetic fiber rope. The link system is analized by the finite element method. The floating type photovoltaic energy generation system consisted of unit modules connected by link system is installed successfully at sea site. In addition, we present the modified design of the floating type photovoltaic energy generation system based on the proto type system.

  • PDF

A Study on the Characteristics of the Combined Generation System by Solar and Wind Energy with Power Storage Apparatus for the Geographical Features

  • Lim, Jung-Yeol;Kang, Byeong-bok;Cha, In-Su
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • The development of the solar and the wind energy is necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently MW Class power generation system has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic and wind power was suggested. It combines wind power energy and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with everchanging weather condition, power storage apparatus that uses elastic energy of spiral spring to combined generation system was also added for the present study.

Development of combined generation systems that power storage apparatus is applied (동력저장장치가 적용된 복합발전시스템의 개발)

  • Lee, Jeong-Il;Seo, Jang-Soo;Kang, Byung-Bog;Cha, In-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • The developments of the solar and the wind power energy are neccessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of existing problems, combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.

The study for developing Wind and Photovoltaic power hybrid generation system and monitoring (풍력.태양광 복합 발전 시스템 개발 및 모니터링에 관한 연구)

  • Park, Kunhyun;Kang, Chulung;Lim, Jonghwan;Park, Euijang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.183.1-183.1
    • /
    • 2010
  • Recently, the increased interest in environmental issues has led to extensive research for development of green energy generation systems. However, only one type of generation system may not be sufficient for stand-alone mode because it cannot cope with the irregularity of weather condition. A hybrid generation system is able to make up for the weakness of each system. In this paper, a stand-alone hybrid wind/PV system is developed that can guarantee the stable energy supply. The system is suitable for power supply under 50W, and a vertical savonius type of blade was designed and applied for the wind generation system.

  • PDF