• Title/Summary/Keyword: Energy flux density

Search Result 261, Processing Time 0.028 seconds

Atomic Layer Etching of Silicon Using a Ar Neutral Beam of Low Energy (저에너지의 Ar 중성빔을 이용한 Silicon의 Atomic Layer Etching)

  • Oh, Chang-Kwon;Park, Sang-Duk;Yeom, Geun-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.213-217
    • /
    • 2006
  • In this study, atomic layer etching of Si has been carried out using $Cl_2$ adsorption followed by the irradiation Ar neutral beam of low energy. In this experiment, the etch rate of Si was dependent on the $Cl_2$ pressure(the surface coverage of chlorine) and the irradiation time of Ar neutral beam(the flux density of Ar neural beam). And the etch rate of Si(100) and Si(111) were saturated exactly at one monolayer per cycle with $1.36{\AA}/cycle\;and\;1.57{\AA}/cycle$, respectively.

General Analytical Method for Magnetic Field Analysis of Halbach Magnet Arrays Based on Magnetic Scalar Potential

  • Jin, Ping;Yuan, Yue;Lin, Heyun;Fang, Shuhua;Ho, S.L.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • This paper presents a general analytical method for predicting the magnetic fields of different Halbach magnet arrays with or without back iron mounted on slotless permanent magnet (PM) linear machines. By using Fourier decomposition, the magnetization components of four typical Halbach magnet arrays are determined. By applying special synthetic boundary conditions on the PM surfaces, the expressions of their magnetic field distributions are derived based on the magnetic scalar potential (MSP), which are simpler than those based on the magnetic vector potential (MVP). The correctness of the method is validated by finite element analysis. The harmonics of airgap flux density waveforms of these Halbach magnet arrays with or without back iron are also compared and optimized.

Design and Characteristics of High-Speed Motor/Generator with Ring Wound Stator for the Flywheel Energy Storage System (플라이휠 에너지 저장 시스템용 Ring-Wound형 초고속 전동전기의 설계 및 특성)

  • Jang, S.M.;Ryu, D.W.;Yang, H.S.;Jeong, S.S.;Choi, S.K.;Ham, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.46-48
    • /
    • 1999
  • This paper treated the design and characteristics of high speed motor/generator with ring wound stator for the flywheel energy storage system. The most important advantages of the ring-wound motor is the slotless stator, i.e. no cogging torque, no space harmonic of air-gap flux density, etc. Because of these advantages, ring wound type motor is suitable to operate at the high speed.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

Measurements of Magnetic Properties of Electromagnetic Actuator in High-Temperature Environment

  • Noh, M.;Gi, M.J.;Kim, D.;Park, Y.W.;Lee, J.;Kim, J.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.86-90
    • /
    • 2015
  • Electromagnetic actuators are versatile and able to meet demanding requirements, such as operation in very low or very high temperatures. When the actuator is used in a high-temperature environment up to $500^{\circ}C$, we need to know how the force-producing capability of the actuator is affected by the operating temperature. Specifically, it is necessary to know the temperature-dependence of magnetic properties that determine the mechanical forces. In this paper, we measure the changes in magnetic properties of SUS410 material in high-temperature environment. We also devise a novel signal processing technique to remove the integration drift. At the field strength of 18,000 A/m, we found that the flux density at $500^{\circ}C$ is decreased by 26%, compared to the result at room temperature. Therefore, the actuator must be sized appropriately, if it is to operate in high-temperature settings.

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.111-121
    • /
    • 2003
  • In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.

Effects of electron beam irradiation on the superconducting properties of YBCO thin films

  • Lee, Y.J.;Choi, J.H.;Jun, B.H.;Joo, J.;Kim, C.S.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • The effects of electron beam (EB) irradiation on the superconducting critical temperature ($T_c$) and critical current density ($J_c$) of YBCO films were studied. The YBCO thin films were irradiated using a KAERI EB accelerator with an energy of 0.2 MeV and a dose of $10^{15}-10^{16}e/cm^2$. A small $T_c$ decrease and a broad superconducting transition were observed as the EB dose increased. The value of $J_cs$ (at 20 K, 50 K and 70 K) increased at doses of $7.5{\times}10^{15}$ and $2.2{\times}10^{16}e/cm^2$. However, $J_cs$ decreased as the dose increased further. The X-ray diffraction (XRD) analysis showed that the c axis of YBCO was elongated and the full width at half maximum (FWHM) increased as the dose increased, which is strong evidence of the atomic displacement by EB irradiation. The transmission electron microscopy (TEM) showed that the amorphous layer formed in the vicinity of the surfaces of the irradiated films. The amorphous phase was often present as an isolated form in the interior of the films. In addition to the formation of the amorphous phase, many striations running along the a-b direction of YBCO were observed. The high magnification lattice image showed that the striations were stacking faults. The enhancement of $J_c$ by EB irradiation is likely to be due to the lattice distortion and the formation of defects such as vacancies and stacking faults. The decrease in $J_c$ at a high EB dose is attributed to the extension of the amorphous region of a non-superconducting phase.

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

Fabrication of Gd1.5Ba2Cu3O7-y Bulk Superconductors from the Powder Synthesized by a Solid-State Reaction Method (고상반응법으로 합성한 분말로부터 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 제조)

  • Kim, Yong Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.309-315
    • /
    • 2013
  • $GdBa_2Cu_3O_{7-y}$(Gd123) powders were synthesized by the solid-state reaction method using $Gd_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with $Gd_2O_3$ addition ($Gd_{1.5}Ba_2Cu_3O_{7-y}$(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature ($T_{c,onset}$) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The $T_{c,onset}$ of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/$cm^2$. The addition of 0.25 mole $Gd_2O_3$ and 1 wt.% $CeO_2$ to Gd123 enhanced the $T_c$, $J_c$ and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The $T_c$ of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The $J_cs$ at 77 K (0 T and 2 T) were $3.2{\times}10^4\;A/cm^2$ and $2.5{\times}10^4\;A/cm^2$, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).

Grazing Relationship between Phytoplankton and Zooplankton in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤과 식물플랑크톤의 섭식관계)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.390-401
    • /
    • 2006
  • This study was conducted to understand the phytoplankton-zooplankton trophic linkage in Lake Paldang ecosystems (Paldang Dam and Kyungan Stream) from April to December 2005. Zooplankton were filtered as two size groups (microzooplankton (MICZ): 60{\sim}20\;{\mu}m$, macrozooplankton (MACZ): >$200\;{\mu}m$), and their clearance rates and C-fluxes on phytoplankton were measured. Grazing experiments were performed in the laboratory with the different zooplankton densities (0, 2, 4, 8x of ambient density, n=2). Diatoms, such as Aulacoseira and Cyclotella were dominant phytoplankton taxa at both sites. Among phytoplankton communities, total carbon biomass of phyflagellates was much higher than others at both sites. Rotifers numerically dominated zooplankton community, while cladocerans dominated carbon biomass. Both phytoplankton and zooplankton density and biomass were high in spring, but decreased markedly after summer monsoon season. plankton biomass at Kyungan Stream was significantly higher than that of Paldang Dam. Zooplankton clearance rate and amount of C-flux were relatively high in the spring and then decreased after summer at both sites. Seasonal change of C-flux was similar to that of zooplankton biomass (P<0.001, n=7). MACZ clearance rate and C-flux were higher than those of MICZ. Water residence time and physical disturbance in summer appeared to affect zooplankton grazing on phytoplankton at the study sites. Our results indicate phytoplankton were an important energy source for zooplankton in Lake Paldang ecosystem. Furthermore, C-flux of plankton food web is affected by not only biological components but also physical parameters.