• Title/Summary/Keyword: Energy cascade

Search Result 126, Processing Time 0.024 seconds

Time-domain Computation of Broadband Noise due to Turbulence-Cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.812-817
    • /
    • 2005
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipole broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to gust-cascade interaction.

  • PDF

A Design and Test of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 설계 및 운전)

  • Lee, Jae-Hun;Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1273-1278
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

A Study on the Power Saving with the Use of LNG Cold Heat in a Cascade Refrigeration Cycle using Methane, Ethylene and Propylene as Refrigerants (메탄, 에틸렌 및 프로판 냉매를 활용한 다원 냉동 사이클에서 LNG 냉열을 활용한 동력 절감 방안에 대한 연구)

  • CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.302-306
    • /
    • 2020
  • In this study, computer simulation works using PRO/II with PROVISION V10.2 have been performed for a cascade refrigeration cycle using methane, ethylene and propane as refrigerants. LNG cold heat was also utilized in order to save the compression powers for the ethylene and propane refrigeration cycles. It was concluded that about 77% of compression power can be saved by using LNG cold heat through the exchanging heat with refrigerants. We could also know that the cold heat price contained in 1 ton of LNG is 16,155 won.

A Study on the Cold Energy for Liquefied Nitrogen Gas and Cascade Refrigeration System (액화질소 초저온과 이원냉동 초저온 냉열의 비교 실험적 연구)

  • Kim, C.S.;Jang, H.S.;Jeong, H.M;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • This paper represents the cold energy for liquefied nitrogen gas and cascade refrigerator. In this study, the vaporizer of liquefied nitrogen gas has the fin coil tube type with the dimension of inside diameter of 10mm and outside diameter of 12mm. Also, the total length of vaporizer is 20,000mm. The main experimental parameters are the mean velocity in duct and the supplied flow-rates of liquefied nitrogen gas. For the cascade refrigeration system, the refrigerants are ethane(R 170) in the high pressure stage and R 22 in the low pressure stage.

  • PDF

An Experimental Study on Energy Losses in Steam Turbine Cascade Flow (증기터빈 익렬유동의 에너지손실에 관한 실험적 연구)

  • ;;Ahn, Hyung-Joon;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3022-3030
    • /
    • 1995
  • The irreversibility of condensation process in the supersonic flow of steam turbine cascade causes the entropy to increase and the total pressure loss to be generated. In the present study, in order to investigate the moist air flow in two dimensional steam turbine cascade made as the configuration of the last stage tip section of the actual steam turbine moving blade, the static and total pressures along suction side of the blade are measured by pressure taps and Pitot tube. The flow field is visualized by a Schlieren system. The effects of stagnation temperature and the degree of supersaturation on energy loss and entropy change in the flow are clearly identified.

The Flow Analysis of Supercavitating Cascade by Nonlinear Theory (비선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

Study on the cascade summing correction for high efficiency HPGe detector (고효율 HPGe 검출기의 동시합성효과 보정 연구)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.107-112
    • /
    • 2005
  • Cascade summing occurs when two gamma-rays emitted in the decay of a single nucleus both deposit energy in a detector. The effect may cause systematic errors that can reach levels of more than ten percent for some radionuclides. A method for estimation of the effect of these coincidences was developed. It is based on direct computation of the effect by means of peak to total ratio measured for the place around the detector. It has been shown that the P/T ratio for the given energy in the working space around the detector may not be a constant value and must use its mean value. Some results from a peak to total calibration study in the presence of scattering materials are also given.

Analysis of Back-to-back Refueling for Heavy Duty Hydrogen Fuel Cell Vehicles Using Hydrogen Refueling Stations Based on Cascade System (캐스케이드 시스템 기반 수소 충전소를 이용한 대형 수소 연료 전지 차량 연속 충전 분석)

  • GYU SEOK SHIM;BYUNG HEUNG PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.300-309
    • /
    • 2024
  • Hydrogen utilization in the transportation sector, which relies on fossil fuels, can significantly reduce greenhouse gas by using to hydrogen fuel cell vehicles, and its adoption depends performance of hydrogen refueling station. The present study developed a model to simulate the back-to-back filling process of heavy duty hydrogen fuel cell vehicles at hydrogen refueling stations using a cascade method. And its quantitatively evaluated hydrogen refueling station performance by simulating various mass flow rates and storage tank capacity combinations, analyzing vehicle state of charge (SOC) of vehicles. In the cascade refueling system, the capacity of the high-pressure storage tank was found to have the greatest impact on the reduction of filling time and improvement of efficiency.

The Operation Characteristics of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 운전특성)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jae-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1353-1357
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF