• Title/Summary/Keyword: Energy Source

Search Result 5,794, Processing Time 0.031 seconds

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

  • Kim, Min-Tae;Lee, Hae-Kag;Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • In this study, for 6-20 MeV electron beam energy occurring in a linear accelerator, the authors attempted to investigate the relation between the effective source-skin distance and the relation between the radiation field and the effective source-skin distance. The equipment used included a 6-20 MeV electron beam from a linear accelerator, and the distance was measured by a ionization chamber targeting the solid phantom. The measurement method for the effective source-skin distance according to the size of the radiation field changes the source-skin distance (100, 105, 110, 115 cm) for the electron beam energy (6, 9, 12, 16, 20 MeV). The effective source-skin distance was measured using the method proposed by Faiz Khan, measuring the dose according to each radiation field ($6{\times}6$, $10{\times}10$, $15{\times}150$, $20{\times}20cm^2$) at the maximum dose depth (1.3, 2.05, 2.7, 2.45, 1.8 cm, respectively) of each energy. In addition, the effective source-skin distance when cut-out blocks ($6{\times}6$, $10{\times}10$, $15{\times}15cm^2$) were used and the effective source-skin distance when they were not used, was measured and compared. The research results showed that the effective source-skin distance was increased according to the increase of the radiation field at the same amount of energy. In addition, the minimum distance was 60.4 cm when the 6 MeV electron beams were used with $6{\times}6$ cut-out blocks and the maximum distance was 87.2 cm when the 6 MeV electron beams were used with $20{\times}20$ cut-out blocks; thus, the largest difference between both of these was 26.8 cm. When comparing the before and after the using the $6{\times}6$ cut-out block, the difference between both was 8.2 cm in 6 MeV electron beam energy and was 2.1 cm in 20 MeV. Thus, the results showed that the difference was reduced according to an increase in the energy. In addition, in the comparative experiments performed by changing the size of the cut-out block at 6 MeV, the results showed that the source-skin distance was 8.2 cm when the size of the cut-out block was $6{\times}6$, 2.5 cm when the size of the cut-out block was $10{\times}10$, and 21.4 cm when the size of the cut-out block $15{\times}15$. In conclusion, it is recommended that the actual measurement is used for each energy and radiation field in the clinical dose measurement and for the measurement of the effective source-skin distance using cut-out blocks.

Energy Efficient LED Lighting Design to utilize the Sun Light (태양광 활용을 위한 효율적 LED 조명기구 설계 방안)

  • Jeong, Hak-Geun;Han, Soo-Bin;Jang, Cheol-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.31-36
    • /
    • 2011
  • LED is expected as an environmentally friendly next generation light source with its good reliability and long lifetime. The light sources for illumination have a variety of applications in the indoor and outdoor, and the variation of optical power and color rendering of the light source limits their applications. Therefore, it is necessary to research the LED lamp and its luminaire to minimize the variation of dynamic characteristics and to improve the color rendering due to that illuminating environment. Daylight is very good light source to human and can be used as primary or a secondary light source with benefits of energy, productivity and health.This paper presents the design method of LED lighting system to improve poor property in terms of CR(color redering) characteristic to use daylight effectively.

Measurement of low energy beta radiation from Ni-63 by using peeled-off Gafchromic EBT3 film

  • Ji, Wanook;Kim, Jong-Bum;Kim, Jin-Joo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3811-3815
    • /
    • 2022
  • Ni-63 is pure beta source which emits low energy beta particles. The Ni-63 sources were fabricated to develop the beta-voltaic battery which converts decay energy into electrical energy for power generation. Activity distribution of the source was important factor of power producibility of the beta-voltaic battery. Liquid scintillation counter widely used for measurement of low energy beta emitters was not suitable to measure activity distribution. In this study, we used the peeled-off Gafchromic™ EBT3 film to measure the activity distribution of the Ni-63 source. Absorbed dose was increased proportionally to the source activity and exposure duration. The low energy beta particles could transport the energy into the active layer without the polyester protective layer. Also, Activity distribution was measured by using the peeled-off EBT3 film. Two-dimensional dosimetric distribution was suitable to measure the activity distribution. To use the peeled-off EBT3 film is user-friendly and cost-effective method for quality assurance of the Ni-63 sources for the beta-voltaic battery.

Machine learning-based categorization of source terms for risk assessment of nuclear power plants

  • Jin, Kyungho;Cho, Jaehyun;Kim, Sung-yeop
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3336-3346
    • /
    • 2022
  • In general, a number of severe accident scenarios derived from Level 2 probabilistic safety assessment (PSA) are typically grouped into several categories to efficiently evaluate their potential impacts on the public with the assumption that scenarios within the same group have similar source term characteristics. To date, however, grouping by similar source terms has been completely reliant on qualitative methods such as logical trees or expert judgements. Recently, an exhaustive simulation approach has been developed to provide quantitative information on the source terms of a large number of severe accident scenarios. With this motivation, this paper proposes a machine learning-based categorization method based on exhaustive simulation for grouping scenarios with similar accident consequences. The proposed method employs clustering with an autoencoder for grouping unlabeled scenarios after dimensionality reductions and feature extractions from the source term data. To validate the suggested method, source term data for 658 severe accident scenarios were used. Results confirmed that the proposed method successfully characterized the severe accident scenarios with similar behavior more precisely than the conventional grouping method.

Feasibility Study of High-Efficiency Ground Heat Exchanger using Double U-tube through a Real-Scale Experiment

  • Bae, Sangmu;Kim, Jaemin;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.33-39
    • /
    • 2017
  • Purpose: The use of renewable energy system is essential for building energy independence and saving energy consumption in the building sector. Among renewable energy technologies, ground source heat pump(GSHP) system is more energy-efficient and environmental-friendly than other heat source systems due to utilize stable ground heat source. However, the GSHP system requires a high initial installation cost and installation space in limited urban area, so it is difficult to have superiority in the market of heat source system. Therefore, it is necessary to develop the installation method of low-cost and improve system performance. This paper aims to evaluate the performance of double u-tube ground heat exchanger(GHX) and verify system feasibility through real-scale experiment. Method: In this study, the real-scale experiment of vertical closed-type GSHP system was conducted using double u-tube GHX and high-efficiency grout. Through the verification experiment, heat source temperature, heat exchange rate(HER) and seasonal performance factor(SPF) were measured according to the long-term operation. In addition, the feasibility analysis was conducted comparing to the single u-tube system. Result: In the results of experiment, average HER was 136.27 W/m and average SPF was 5.41. Furthermore, compared to the single u-tube, the installation cost of the developed system could be reduced about 70% in the same heating load condition.

A Novel Large Area Negative Sputter Ion Beam source and Its Application

  • Kim, Steven
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.73-73
    • /
    • 1999
  • A large area negative metal ion beam source is developed. Kinetic ion beam of the incident metal ions yields a whole nucleation and growth phenomena compared to the conventional thin film deposition processes. At the initial deposition step one can engineer the surface and interface by tuning the energy of the incident metal ion beams. Smoothness and shallow implantation can be tailored according to the desired application process. Surface chemistry and nucleation process is also controlled by the energy of the direct metal ion beams. Each individual metal ion beams with specific energy undergoes super-thermodynamic reactions and nucleation. degree of formation of tetrahedral Sp3 carbon films and beta-carbon nitride directly depends on the energy of the ion beams. Grain size and formation of polycrystalline Si, at temperatures lower than 500deg. C is obtained and controlled by the energy of the incident Si-ion beams. The large area metal ion source combines the advantages of those magnetron sputter and SKIONs prior cesium activated metal ion source. The ion beam source produces uniform amorphous diamond films over 6 diameter. The films are now investigated for applications such as field emission display emitter materials, protective coatings for computer hard disk and head, and other protective optical coatings. The performance of the ion beam source and recent applications will be presented.

  • PDF

The Performance Test and the Feasibility Study for a Dual-Source Heat Pump System Using the Air and Ground Heat Source (공기 및 지열 이용 Dual-Source 히트펌프 시스템의 성능실험 및 경제성 분석)

  • Nam, Yujin;Chae, Ho-Byung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.212-217
    • /
    • 2014
  • Recently, the use of renewable energy has been increased due to growing concern on the energy-saving at buildings and the reduction of $CO_2$ emission. In the field of architecture, to reduce the energy consumption of heating, cooling and hot water supply, heat pump systems with renewable energy has been developed and used in various applications. However, there have been many of researches on the large-scale commercial heat pump systems, but the research and the field application of a compact heat pump system is rare. Therefore, in order to develop the compact heat pump for the small-scale residential building, this study conducted the performance test and feasibility study for a hybrid heat pump using the heat source of air, solar and ground. In the results of experiments through a trial product, the average COP of cooling mode with ground heat source was 4.75, and it of heating mode was 4.03. Furthermore, the average COP of cooling mode with air heat source was 2.60, and it of heating mode was 2.92. Finally, payback period of the system was calculated as 9.2 years.

Stability Control of Energy Storage Voltage Source Inverters in Isolated Power Systems

  • Hu, Jian;Fu, Lijun
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1844-1854
    • /
    • 2018
  • Isolated power systems (IPS) are often characterized by a weak grid due to small power grids. The grid side voltage is no longer equivalent to an ideal voltage source of an infinitely big power grid. The conversion control of new energy sources, parameter perturbations as well as the load itself can easily cause the system voltage to oscillate or to become unstable. To solve this problem, increasing the energy-storage power sources is usually used to improve the reliability of a system. In order to provide support for the voltage, the energy-storage power source inverter needs an method to control the voltage source. Therefore, this paper has proposed the active damping control of a voltage source inverter (VSI) based on virtual compensation. By simplifying the VSI double closed-loop control, two feedback compensation channels have been constructed to reduce the VSI output impedance without changing the characteristics of the voltage gain of a system. This improvement allows systems to operate stably in a larger range. A frequency-domain analysis, and simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

A study on the part-load performance of 2-stage water source heat pump (2단 압축 수열원 열펌프 시스템의 부분부하 운전특성에 관한 연구)

  • Lee, Young-Soo;Baik, Young-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. In this study, an experimental study on a 2-stage heat pump, which is designed to utilize a river water heat source, were carried out. Generally, a heat pump is designed for maximum capacity rate, but it actually operates at part load condition in most cases. Therefore, an information on the part-load characteristic is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes.

  • PDF

Design of power amplifier and antenna for wireless power transmission (무선전력 송수신을 위한 전력용 증폭기와 송수신 Antenna 설계)

  • Yim, Sang-Wook;Kim, Yong-Sang;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.247-249
    • /
    • 2004
  • Electric systems can be classified into two classes on the basis of the location of its energy source. One system is to be connected with its outside energy source. Obviously, these electric system is limited of its motion range and impossible to operate in the situation without a way to find an energy source nearby. another is to posses the energy source within it. These electric systems are free of motion range limit while their using is limited by the life of source. These limits can be tided over by using passive-type RF communication. RF-ID is a system that Is possible to interchange electricity and data by Radio Frequency to locate and identify various objects including a man.

  • PDF