This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.
It is necessary to assess and manage the different elements of the marine ecosystem, such as climate change, habitat, primary and secondary production, energy flow, food web, potential yield, and fishing, to maintain the health of the ecosystem as well as support sustainable development of fishery. We set up an ecosystem model around the Korean peninsula to produce scientific predictions necessary for the assessment and management of marine ecosystems and presented the usability of the model with scenario experiments. We used the Atlantis ecosystem model based on the marine food web; Atlantis is a three-dimensional end-to-end model that includes the information and processes within an entire system, from an abiotic environment to human activity. We input the ecological and biological parameters, such as growth, mortality, spawning, recruitment, and migration, to the Atlantis model via functional groups using existing research and local measurements. During the simulation period (2018-2019), we confirmed that the model reproduced the observed data reasonably and reflected the actual ecosystem characteristics appropriately. We thus identified the usability of a marine ecosystem model with experiments on different environmental change scenarios.
Power plant simulators have been used for operator training, control verification and engineering verification. In general, simulators can be used in the place where they are installed by only single user group at a time. Considering high cost of simulator development, a lot of available scenarios, the diversity of user level and accessibility based on users' work location, development of simulator system that can be used by multiple user groups regardless of location is required in order to enhance utilization of simulators. In this paper, the simulator system that can be used by multiple user group simultaneously without location limitation is proposed. The simulator system is composed of simulator servers, database servers, HMI servers, a web server, web clients. Simulator server consists of control model, process model that are developed for Circulating Fluidized Bed power plant located overseas. A web server manages user accounts, operation procedures, multiple server access between web client group and simulator server group. In other words, a web server makes a user group select a simulator server at a time. The developed simulator system is integrated after implementing process model, control model, HMI, and web server. Web client systems are installed on local site where power plant is located, while simulator servers, HMI servers, database servers, and a web server are located in KEPCO RI. The developed simulator system is verified by steady-state test, malfunction test and so on via remote access.
The Physical Protection System (PPS) plays an important role and must effectively deal with various adversary attacks in nuclear security. In specific single adversary path scenarios, we can calculate the PPS effectiveness by EASI (Estimated Adversary Sequence Interruption) through Probability of Interruption (PI) calculation. EASI uses a single value of the probability of detection (PD) and the probability of alarm communications (PC) in the PPS. In this study, we develop a multi-path analysis code based on EASI to evaluate the effectiveness of PPS. Our quantification method for PI considers the variability and uncertainty of PD and PC value by Monte Carlo simulation. We converted the 2-D scheme of the nuclear facility into an Adversary Sequence Diagram (ASD). We used ASD to find the adversary path with the lowest probability of interruption as the most vulnerable paths (MVP). We examined a hypothetical facility (Hypothetical National Nuclear Research Facility - HNNRF) to confirm our code compared with EASI. The results show that implementing the variability extension can estimate the PI value and its associated uncertainty. The multi-path analysis code allows the analyst to make it easier to assess PPS with more extensive facilities with more complex adversary paths. However, the variability of the PD value in each protection element allows a significant decrease in the PI value. The possibility of this decrease needs to be an important concern for PPS designers to determine the PD value correctly or set a higher standard for PPS performance that remains reliable.
Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
Earthquakes and Structures
/
제22권2호
/
pp.185-201
/
2022
Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.
Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.
Conventionally, all the unsafe acts by human beings in relation to industrial accidents have been regarded as unintentional human errors. Exceptionally, however, in the cases with fatalities, seriously injured workers, and/or losses that evoked social issues, attention was paid to violating related laws and regulations for finding out some people to be prosecuted and given judicial punishments. As Heinrich stated, injury or loss in an accident is quite a random variable, so it can be unfair to utilize it as a criterion for prosecution or punishment. The present study was conducted to comprehend how categorizing intentional violations in unsafe acts might disrupt conventional conclusions about the industrial accident process. It was also intended to seek out the right direction for countermeasures by examining unsafe acts comprehensively rather than limiting the analysis to human errors only. In an analysis of 150 industrial accident cases that caused fatalities and featured relatively clear accident scenarios, the results showed that only 36.0% (54 cases) of the workers recognized the situation they confronted as risky, out of which 29.6% (16 cases) thought of the risk as trivial. In addition, even when the risks were recognized, most workers attempted to solve the hazardous situations in ways that violated rules or regulations. If analyzed with a focus on human errors, accidents can be attributed to personal deviations. However, if considered with an emphasis on safety rules or regulations, the focus will naturally move to the question of whether the workers intentionally violated them or not. As a consequence, failure of managerial efforts may be highlighted. Therefore, it was concluded that management should consider unsafe acts comprehensively, with violations included in principle, during accident investigations and the development of countermeasures to prevent future accidents.
연료전지는 저탄소 발전원으로 주유소 내 연료전지를 설치 시 분산에너지와 전기차 충전인프라를 확충할 수 있다. 주유소 내 연료전지 설치 시 안전성 확보를 위하여 국‧내외 주유소 및 연료전지의 사고데이터를 기반으로 사고시나리오를 도출하고 사고피해예측을 위한 정량적 위험성평가를 실시하였다. 최악의 사고시나리오가 아닌 현실적으로 발생 가능한 화재 및 폭발사고의 피해범위를 산출하고, 피해영향을 분석한 결과 주유기로부터 9.0 m, 주유 중 차량으로부터 15.5 m, 통기관으로부터 4.1 m, 연료전지의 정압기 등 가스조정장치로부터 1.1 m 이상 이격 시 사고로 인한 심각한 피해 위험을 낮출 수 있는 것으로 나타났다. 이러한 연구 결과는 주유소 내 연료전지 배치 및 사고피해를 경감할 수 있는 안전대책 수립에 활용할 수 있을 것으로 기대된다.
대다수의 IoT 기기들은 이미 AIoT를 사용하고 있지만, AI 애플리케이션을 구축하기 위해서는 아직 해결해야 할 문제가 많이 남아 있다. 본 연구에서는 IoT 에지 자원을 보다 효과적으로 분산하기 위해 머신러닝 기반의 IoT 에지 자원 관리 기법을 제안한다, 제안 기법은 머신러닝을 이용하여 IoT 에지 자원 동향을 파악함으로써 IoT 자원의 할당을 지속적으로 개선하며, 최적화된 IoT 자원은 머신러닝 컨볼루션을 활용하여 항상 변화하는 IoT 에지 자원을 안정적으로 유지한다, 제안 기법은 각각의 머신러닝 기반 IoT 에지 자원을 이전 패턴의 자원과 함께 해시값으로 저장함으로써 분산된 AIoT 맥락에서 공격 패턴으로 자원을 효과적으로 검증한다. 실험 결과에서는 IoT Edge 리소스의 무결성을 검증하기 위해서 이질적인 계산 하드웨어가 있는 복잡한 환경에서 잘 동작하는지 세 가지 다른 테스트 시나리오에서 에너지 효율성을 평가하였다.
The study of human erroneous actions has traditionally taken place along two different lines of approach. One has been concerned with finding and explaining the causes of erroneous actions, such as studies in the psychology of "error". The other has been concerned with the qualitative and quantitative prediction of possible erroneous actions, exemplified by the field of human reliability analysis (HRA). Another distinction is also that the former approach has been dominated by an academic point of view, hence emphasising theories, models, and experiments, while the latter has been of a more pragmatic nature, hence putting greater emphasis on data and methods. We have been developing a method to make predictions about error modes. The input to the method is a detailed task description of a set of scenarios for an experiment. This description is then analysed to characterise thd nature of the individual task steps, as well as the conditions under which they must be carried out. The task steps are expressed in terms of a predefined set of cognitive activity types. Following that each task step is examined in terms of a systematic classification of possible error modes and the likely error modes are identified. This effectively constitutes a qualitative analysis of the possibilities for erroneous action in a given task. In order to evaluate the accuracy of the predictions, the data from a large scale experiment were analysed. The experiment used the full-scale nuclear power plant simulator in the Halden Man-Machine Systems Laboratory (HAMMLAB) and used six crews of systematic performance observations by experts using a pre-defined task description, as well as audio and video recordings. The purpose of the analysis was to determine how well the predictions matiched the actually observed performance failures. The results indicated a very acceptable rate of accuracy. The emphasis in this experiment has been to develop a practical method for qualitative performance prediction, i.e., a method that did not require too many resources or specialised human factors knowledge. If such methods are to become practical tools, it is important that they are valid, reliable, and robust.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.