• Title/Summary/Keyword: Energy Parameters

Search Result 5,776, Processing Time 0.034 seconds

New approach to calculate Weibull parameters and comparison of wind potential of five cities of Pakistan

  • Ahmed Ali Rajput;Muhammad Daniyal;Muhammad Mustaqeem Zahid;Hasan Nafees;Misha Shafi;Zaheer Uddin
    • Advances in Energy Research
    • /
    • v.8 no.2
    • /
    • pp.95-110
    • /
    • 2022
  • Wind energy can be utilized for the generation of electricity, due to significant wind potential at different parts of the world, some countries have already been generating of electricity through wind. Pakistan is still well behind and has not yet made any appreciable effort for the same. The objective of this work was to add some new strategies to calculate Weibull parameters and assess wind energy potential. A new approach calculates Weibull parameters; we also developed an alternate formula to calculate shape parameters instead of the gamma function. We obtained k (shape parameter) and c (scale parameter) for two-parameter Weibull distribution using five statistical methods for five different cities in Pakistan. Maximum likelihood method, Modified Maximum likelihood Method, Method of Moment, Energy Pattern Method, Empirical Method, and have been to calculate and differentiate the values of (shape parameter) k and (scale parameter) c. The performance of these five methods is estimated using the Goodness-of-Fit Test, including root mean square error, mean absolute bias error, mean absolute percentage error, and chi-square error. The daily 10-minute average values of wind speed data (obtained from energydata.info) of different cities of Pakistan for the year 2016 are used to estimate the Weibull parameters. The study finds that Hyderabad city has the largest wind potential than Karachi, Quetta, Lahore, and Peshawar. Hyderabad and Karachi are two possible sites where wind turbines can produce reasonable electricity.

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

Some Studies on Physics Parameters of Wolsung Unit No. 1

  • Kim, Seoung-Yun;Kim, Bong-Ghi;Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.111-120
    • /
    • 1980
  • Nuclear physics parameters of the Wolsung CANDU-PHW reactor are computed by use of the PHWCELL computer code that is an improved version of LATREP. The PHWCELL code mainly computes cell parameters of heavy water moderated reactors, and modeling scheme of heavy water reactor cell calculations has been developed with the PHWCELL computer code. The reactor operating conditions considered in the study are cold zero power (CZP) and hot full power (HFP) with equilibrium poison. The cell parameters are also computed as a function of fuel burnup and the numerical results are compared with the results in PSR of the Wolsung unit and in the previous study.

  • PDF

Long Term Average Spectral Analysis for Acoustical Description of Korean Nasal Consonants (한국어 비음의 음향학적 세부 기술을 위한 장구간 스펙트럼(LTAS) 분석)

  • Choi, Soo-Nai;Seong, Cheol-Jae
    • Proceedings of the KSPS conference
    • /
    • 2006.11a
    • /
    • pp.92-95
    • /
    • 2006
  • The purpose of this study is to find the acoustic parameters on frequency domain to distinguish the Korean nasals, /m, n, ng/ from each other. Since it is not easy to characterize the antiformant on frequency domain, we suggest the new parameters that are calculated by LTAS(Long term average spectrum). Maximum energy value and its frequency and minimum energy and its frequency of zero are obtained from the spectrum respectively. In addition, slope1, slope2, total energy value, centroid, skewness, and kurtosis are suggested as new parameters as well. The parameters that are revealed as to be statistically signigicant difference are roughly peak1_a, zero_f, slope_1, slope_2, highENG, zero_ENG, and centroid.

  • PDF

Design Optimization of Centrifugal Pump Impellers in a Fixed Meridional Geometry using DOE

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Yoon, Joon-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.172-178
    • /
    • 2009
  • This paper reports on an investigation (using RSM with commercial CFD software) of the performance characteristics of the impeller in a centrifugal pump. Geometric parameters of vane plane development were defined with the meridional shape and frontal view of the impeller. The parameters are focused on the blade-angle distributions through the impeller in a fixed meridional geometry. For screening, a $2^k$ factorial design has been used to identify the important design parameters. The objective functions are defined as the total head rise and the total efficiency at the design flow-rate. From the $2^k$ factorial design results, it is found that the incidence angles and the exit blade angle are the most important parameters influencing the performance of the pump.

Steam Explosion Module Development for the MELCOR Code Using TEXAS-V

  • Park I.K.;Kim D.H.;Song J.H.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.286-298
    • /
    • 2003
  • A steam explosion module, STX, has been developed using the mechanistic steam explosion analysis code, TEXAS-V, in order to estimate the dynamic load with steam explosion by implementing the module to the integrated safety analysis code, MELCOR. One of the difficulties in using mechanistic steam explosion codes is that they do not have any obvious criteria for defining some uncertain parameters such as triggering timing, triggering magnitude, mesh axial length and mesh cross-sectional area. These parameters have been user decision parts in the past. Steam explosion sample calculations and sensitivity studies on uncertain parameters were conducted to investigate those uncertain parameters. The TEXAS-V simulations were summarized in the format of a look-up table and a linear interpolation technique was adopted to calculate the steam explosion load between the data points in the table. The STX-module merged with MELCOR showed the same results as the original MELCOR and additionally it could estimate the steam explosion load in the reactor cavity.

Estimation of weibull parameters for wind energy application in Iran's cities

  • Sedghi, Majid;Hannani, Siamak K.;Boroushaki, Mehrdad
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.203-221
    • /
    • 2015
  • Wind speed is the most important parameter in the design and study of wind energy conversion systems. The weibull distribution is commonly used for wind energy analysis as it can represent the wind variations with an acceptable level of accuracy. In this study, the wind data for 11 cities in Iran have been analysed over a period of one year. The Goodness of fit test is used for testing data fit to weibull distribution. The results show that this data fit to weibull function very well. The scale and shape factors are two parameters of the weibull distribution that depend on the area under study. The kinds of numerical methods commonly used for estimating weibull parameters are reviewed. Their performance for the cities under study was compared according to root mean square and wind energy errors. The result of the study reveals the empirical, modified maximum likelihood estimate of wind speed with minimum error. Also, that the moment and modified maximum likelihood are the best methods for estimating the energy production of wind turbines.

Prediction of hysteretic energy demands in steel frames using vector-valued IMs

  • Bojorquez, Eden;Astorga, Laura;Reyes-Salazar, Alfredo;Teran-Gilmore, Amador;Velazquez, Juan;Bojorquez, Juan;Rivera, Luz
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.697-711
    • /
    • 2015
  • It is well known the importance of considering hysteretic energy demands for the seismic assessment and design of structures. In such a way that it is necessary to establish new parameters of the earthquake ground motion potential able to predict energy demands in structures. In this paper, several alternative vector-valued ground motion intensity measures (IMs) are used to estimate hysteretic energy demands in steel framed buildings under long duration narrow-band ground motions. The vectors are based on the spectral acceleration at first mode of the structure Sa($T_1$) as first component. As the second component, IMs related to peak, integral and spectral shape parameters are selected. The aim of the study is to provide new parameters or vector-valued ground motion intensities with the capacity of predicting energy demands in structures. It is concluded that spectral-shape-based vector-valued IMs have the best relation with hysteretic energy demands in steel frames subjected to narrow-band earthquake ground motions.

Transient loss analysis of non-insulation high temperature superconducting coil using the field-based data profiling method

  • Hoon Jung;Yoon Seok Chae;June Hee Han;Ji Hyung Kim;Seung Hoon Lee;Ho Chan Kim;Young Soo Yoon;Ho Min Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.38-42
    • /
    • 2023
  • The evaluation of no-insulation (NI) high-temperature superconducting (HTS) typically uses the lumped equivalent circuit (LEC) model. Constant parameters in the NI HTS LEC model accurately predict voltage and central magnetic field at currents below the critical current. However, it is difficult to find constant circuit parameters that simultaneously satisfy the measured voltage and magnetic field under overcurrent conditions. Recent research highlights changes in contact resistance during transient conditions, which may impact power loss estimation in NI HTS coils. Therefore, we confirm the influence of contact resistance changes on loss calculation in the transient state for NI HTS coil. To achieve this, we introduce a measurement data analysis method based on the LEC model and compare it with the LEC model using constant circuit parameters.

Changes in High Degree p-mode Parameters with Magnetic and Flare Activities

  • Maurya, Ram Ajor
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.89.2-89.2
    • /
    • 2013
  • Solar energetic transients, e.g., flares, CMEs, etc., release large amount of energy which is expected to excite acoustic waves (p-modes) by exerting mechanical impulse of the thermal expansion of the flare on the photosphere. We study the p-mode properties of flaring and dormant active regions (ARs) to find association between flare and p-mode parameters. We compute the magnetic and flare activity indices of ARs using the line-of-sight magnetograms and GOES X-ray fluxes, respectively. The p-mode parameters are computed from the ring-diagram analysis. We correct p-mode parameters for magnetic field, filling factors and foreshortening by multiple linear-regression analysis. Our analysis of several flaring and dormant ARs observed during the Carrington rotations 1980-2109, showed strong association of mode parameters with magnetic and flare activities. We find that the mode parameters are contaminated by the geometrical effect. Mode amplitude decreases with angular distance from the solar disc centre. The mode width increases with magnetic activity while amplitude showed opposite relation due to mode absorption by the sunspot. After correcting modes due to all geometrical effects, magnetic activity and filling factor, we find that the modes amplitude, and mode energy increases with flare energy while width shows opposite relation.

  • PDF