• Title/Summary/Keyword: Energy Equation

Search Result 2,843, Processing Time 0.025 seconds

A simplified normalized cumulative hysteretic energy spectrum

  • Sun, Guohua;Gu, Qiang;Fang, Youzhen
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • For energy-based seismic design, a simplified normalized cumulative hysteretic energy spectrum proposed for obtaining hysteretic energy as energy demand is the main objective in this paper. The dimensionless parameter, ${\beta}_{Eh}$, is presented to express hysteretic energy indirectly. The ${\beta}_{Eh}$ spectrum is constructed directly through subtracting the hysteretic energy of single degree-of-freedom (SDOF) system energy equation. The simplified ${\beta}_{Eh}$ spectral formulation as well as pseudo-acceleration spectrum of modern seismic provisions is developed based on the regression analysis of the large number of seismic responses of SDOF system subjected to earthquake excitations, which considers the influence of earthquake event, soil type, damping ratio, and ductility factor. The relationship between PGV and PGA is established according to the statistical analysis relied on a total of 422 ground motion records. The combination of ${\beta}_{Eh}$ spectrum and PGV/PGA equation allows determining the cumulative hysteretic energy as a main aseismic design indicator.

Electron Mean Energy in CF4, CH4, Ar mixtures (CF4, CH4, Ar 혼합기체의 전자 평균에너지)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.241-245
    • /
    • 2015
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CH_4$, mixtures of $CH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy.

Accuracy of predictive equations for resting energy expenditure (REE) in non-obese and obese Korean children and adolescents

  • Kim, Myung-Hee;Kim, Jae-Hee;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • v.6 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Weight-controlling can be supported by a proper prescription of energy intake. The individual energy requirement is usually determined through resting energy expenditure (REE) and physical activity. Because REE contributes to 60-70% of daily energy expenditure, the assessment of REE is very important. REE is often predicted using various equations, which are usually based on the body weight, height, age, gender, and so on. The aim of this study is to validate the published predictive equations for resting energy expenditure in 76 normal weight and 52 obese Korean children and adolescents in the 7-18 years old age group. The open-circuit indirect calorimetry using a ventilated hood system was used to measure REE. Sixteen REE predictive equations were included, which were based on weight and/or height of children and adolescents, or which were commonly used in clinical settings despite its use based on adults. The accuracy of the equations was evaluated on bias, RMSPE, and percentage of accurate prediction. The means of age and height were not significantly different among the groups. Weight and BMI were significantly higher in obese group (64.0 kg, $25.9kg/m^2$) than in the non-obese group (44.8 kg, $19.0kg/m^2$). For the obese group, the Molnar, Mifflin, Liu, and Harris-Benedict equations provided the accurate predictions of > 70% (87%, 79% 77%, and 73%, respectively). On the other hand, for non-obese group, only the Molnar equation had a high level of accuracy (bias of 0.6%, RMSPE of 90.4 kcal/d, and accurate prediction of 72%). The accurate prediction of the Schofield (W/WH), WHO (W/WH), and Henry (W/WH) equations was less than 60% for all groups. Our results showed that the Molnar equation appears to be the most accurate and precise for both the non-obese and the obese groups. This equation might be useful for clinical professionals when calculating energy needs in Korean children and adolescents.

Cure Kinetics of DGEBA/MDA/HQ-PGE System (DGEBA/MDA/HQ-PGE계의 경화 반응 속도론)

  • Song, Young-Wook;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.356-361
    • /
    • 1996
  • Cure kinetics of diglycidyl ether of bisphenol A(DGEBA)/4,4'-methylene dianiline(MDA) with hydroquinone-phenyl glycidyl ether(HQ-PGE) as a reactive additive, which was preliminarily synthesized, was investigated by DSC and FT-IR analyses. Kissinger equation and Arrhenius' equation were used to calculate activation energy and pre-exponential factor. When HQ-PGE was added to DGEBA/MDA system, it reduced activation energy of system. When the 5 phr of HQ-PGE was added to DGEBA/MDA system, activation energy was 7.8 kcal/mol by FT-IR analysis and 11.3 kcal/mol by DSC, in comparison with the system without HQ-PGE, activation energy decreased about 30% and 9%, respectively. According to these results, HQ-PGE, introducing agent of this system, acted as a catalyst.

  • PDF

Electron Energy Distribution function in CH4 by MCS-BEq (MCS-BEq에 의한 CH4기체에서 전자에너지 분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$_{\circ}\;K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect

  • Nazemnezhad, Reza;Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.449-462
    • /
    • 2020
  • This work aims to study effects of the crack and the surface energy on the free longitudinal vibration of axially functionally graded nanorods. The surface energy parameters considered are the surface stress, the surface density, and the surface Lamé constants. The cracked nanorod is modelled by dividing it into two parts connected by a linear spring in which its stiffness is related to the crack severity. The surface and bulk material properties are considered to vary in the length direction according to the power law distribution. Hamilton's principle is implemented to derive the governing equation of motion and boundary conditions. Considering the surface stress causes that the derived governing equation of motion becomes non-homogeneous while this was not the case in works that only the surface density and the surface Lamé constants were considered. To extract the frequencies of nanorod, firstly the non-homogeneous governing equation is converted to a homogeneous one using an appropriate change of variable, and then for clamped-clamped and clamped-free boundary conditions the governing equation is solved using the harmonic differential quadrature method. Since the present work considers effects of all the surface energy parameters, it can be claimed that this is a comprehensive work in this regard.

Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar ($CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

Nonlinear vibration analysis of FG porous shear deformable cylindrical shells covered by CNTs-reinforced nanocomposite layers considering neutral surface exact position

  • Zhihui Liu;Kejun Zhu;Xue Wen;Abhinav Kumar
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • This paper presents nonlinear vibration analysis of a composite cylindrical shell. The core of the shell is made of functionally graded (FG) porous materials and layers is fabricated of carbon nanotubes (CNTs) reinforced nanocomposites. To increase the accuracy of results, neutral surface position is considered. First-order shear deformation theory is used as displacement field to derive the basic relations of equation motions. In addition, von-Karman nonlinear strains are employed to account geometric nonlinearity and to enhance the results' precision, the exact position of the neutral surface is considered. To governing the partial equations of motion, the Hamilton's principle is used. To reduce the equation motions into a nonlinear motion equation, the Galerkin's approach is employed. After that the nonlinear motion equation is solved by multiple scales method. Effect of various parameters such as volume fraction and distribution of CNTs along the thickness directions, different patterns and efficiency coefficients of porous materials, geometric characteristics and initial conditions on nonlinear to linear ratio of frequency is investigated.