• Title/Summary/Keyword: Energy Diffusion

Search Result 1,547, Processing Time 0.025 seconds

Hydraulic-Thermal-Mechanical Properties and Radionuclide Release-Retarding Capacity of Kyungju Bentonite (경주 벤토나이트의 수리-열-역학적 특성 및 핵종 유출 저지능)

  • Jae-Owan Lee;Won-Jin Cho;Pil-Soo Hahn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Studies were conducted to select the candidate buffer material for a high-level waste (HLW) repository in Korea. This paper presents the hydraulic properties, the swelling properties, the thermal properties, and the mechanical properties as well as the radionuclide release-retarding capacity of Kyungju bentonite as part of those studies. Experimental results showed that the hydraulic conductivities of the compacted bentonite were very low and less than $10^{-11}$m/s. The values decreased with increasing the dry density of the compacted bentonite. The swelling pressures were in the range of 0.66 MPa to 14.4 ㎫ and they increased with increasing the dry density. The thermal conductivities were in the range of 0.80 ㎉/m $h^{\circ}C$ to 1.52 ㎉/m $h^{\circ}C$. The unconfined compressive strength, Young's modulus and Poison's ratio showed the range of 0.55 ㎫ to 8.83 ㎫, 59 ㎫ to 1275 ㎫, and 0.05 to 0.20, respectively, when the dry densities of the compacted bentonite were 1.4 Ms/㎥ to 1.8 Mg/㎥. The diffusion coefficients in the compacted bentonite were measured under an oxidizing condition. The values were $1.7{\times}10^{-10}$m^2$/s to 3.4{\times}10^{-10}$m^2$/s for electrically neutral tritium (H-3), 8.6{\times}10^{-14}$m^2$/s to 1.3{\times}10^{-12}$m^2$/s for cations (Cs, Sr, Ni), 1.2{\times}10^{-11}$m^2$/s to 9.5{\times}10^{-11}$m^2$/s for anions (I, Tc), and 3.0{\times}10^{-14} $m^2$/s to 1.8{\times}10^{-13}$m^2$/s $for actinides (U, Am), when tile dry densities were in the range of 1.2 Mg/㎥ to 1.8 Mg/㎥. The obtained results will be used in assessing the barrier properties of Kyungju bentonite as a buffer material of a repository in Korea.n Korea.

  • PDF

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

Study on Nucleation and Evolution Process of Ge Nano-islands on Si(001) Using Atomic Force Microscopy (AFM을 이용한 Si (001) 표면에 Ge 나노점의 형성과 성장과정에 관한 연구)

  • Park, J.S.;Lee, S.H.;Choia, M.S.;Song, D.S.;Leec, S.S.;Kwak, D.W.;Kim, D.H.;Yang, W.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.226-233
    • /
    • 2008
  • The nucleation and evolution process of Ge nano-islands on Si(001) surfaces grown by chemical vapor deposition have been explored using atomic force microscopy (AFM). The Ge nano-islands are grown by exposing the substrates to a mixture of gasses GeH4 and H2 at pressure of 0.1-0.5Torr and temperatures of $600-650^{\circ}C$. The effect of growth conditions such as temperature, Ge thickness, annealing time on the shape, size, number density, and surface distribution was investigated. For Ge deposition greater than ${\sim}5$ monolayer (ML) with a growth rate of ${\sim}0.1ML/sec$ at $600^{\circ}C$, we observed island nucleation on the surface indicating the transition from strained layer to island structure. Further deposition of Ge led to shape transition from initial pyramid and hut to dome and superdome structure. The lateral average size of the islands increased from ${\sim}20nm$ to ${\sim}310nm$ while the number density decreased from $4{\times}10^{18}$ to $5{\times}10^8cm^{-2}$ during the shape transition process. In contrast, for the samples grown at a relatively higher temperature of $650^{\circ}C$ the morphology of the islands showed that the dome shape is dominant over the pyramid shape. The further deposition of Ge led to transition from the dome to the superdome shape. The evolution of shape, size, and surface distribution is related to energy minimization of the islands and surface diffusion of Ge adatoms. In particular, we found that the initially nucleated islands did not grow through long-range interaction between whole islands on the surface but via local interaction between the neighbor islands by investigation of the inter-islands distance.

Analysis of the Level of Cognitive Demands about Concepts of the Changes of State and Kinetic Theory on 'Science 1' Textbooks in Junior High School (III) ('과학1' 중학교 교과서의 물질의 상태 변화와 분자 운동 내용이 요구하는 인지 수준 분석(제III보))

  • Park, Jieun;Park, Yesul;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.640-655
    • /
    • 2013
  • The purpose of this study is to analyze the cognitive demands level of the description about 'changes of state' and 'kinetic theory' on the 'science 1' textbooks by the 2007 revised curriculum. The three types of curriculum analysis taxonomy have been used to analyze the cognitive demands level of those contents on the 6 kinds of 'science 1' textbooks. The most higher level of cognitive demands about the concepts have been discussed here due to the focus of the concepts. The first, the cognitive demand level about 'three states of substances' depending on the motion of their particles in 6 textbooks is a early formal operational stage because of using by the application of kinetic theory. The second, the cognitive demand level about 'diffusion' and 'evaporation' is a early formal operational stage, because the particles move around faster so they can change their position. The third, the cognitive level of the pressure and volume in a gas is a early formal operational stage because of explaining only phenomena in simple correspondence with formal model of kinetic theory. And simple functional relationships beyond linear on the graph of the volume and pressure of gas, the volume and temperature of gas is also a early formal operational stage. The fourth, the cognitive level of the energy of heat by a change of the state is also a early formal operational stage because kinetic theory picture accepted as providing explanation by the change of the state. And functional relationships beyond linear on the graph of the explanation of boiling point of water in water is also a early formal operational stage.

Studies on LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$ based Glassy Solid Electrolytes (LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$계 유리고체전해질에 관한 연구)

  • Park, Gang-Seok;Gang, Eun-Tae;Kim, Gi-Won;Han, Sang-Mok
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.614-623
    • /
    • 1993
  • Electrical characteristics of LiF-$Li_{2}O-B_{2}O_{3}-P_{2}O_5$ glasses with fixed $Li_2O$ content have been investigated by using AC impedance spectroscopy. Part of the total lithium ions present in these glasses contributes to conduction, and the changes in electrical conductivity with composition was inconsistent with the weak electrolyte model. The power law could not be used to determine the hopping ion concentration in these glasses. Both mobile carrier density and mobility have been modified as Li were added in the form of LiF. The formation of $(B-O-P)^-,di^-$, and metaborate group gave additional available sites for Li+ diffusion causing the enhancement of conductivity. The observed maximum conductivity was $2.43 \times 10^{-4}$S/cm at $150^{\circ}C$ at the composition containing 8mol% LiF. The decomposion potential amounted to 5.94V. The Li/glass electrolyte/$TiS_2$ solid-state cell showed open circuit voltage of 3.14V and energy density of 22 Wh/Kg at $150^{\circ}C$.

  • PDF

A study on the effect of Ni-rich phase on the stress-rupture properties of Ni microalloyed W (W 활성소결체의 Ni-rich 상의 양이 응력 파단 성질에 미치는 영향에 관한 연구)

  • Park, Dae-Gyu;Kim, Su-Seong;Lee, Kyung-Sub
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.270-278
    • /
    • 1992
  • The effect of Ni-rich phase on the stress-rupture properties of Ni mlcroalloyed W were studied using direct load creep tester at 100$0^{\circ}C$, 110$0^{\circ}C$, and 120$0^{\circ}C$ in $H_2.$ The stress rupture strength of 100hrs. of W-0.4wt% Ni was 43% higher at 100$0^{\circ}C$ and 35% higher at 110 $0^{\circ}C$than that of W-0.2wt% Ni due to the larger initial grain size, the higher relative density and the higher grain growth during test. That of W-0.8wt% Ni was 90% higher at 100$0^{\circ}C$ and 60% higher at 110$0^{\circ}C$ than that of W-0.2wt% Ni. The activation energy of W-0.4wt% Ni for creep was 81.3 Kcal/mole. It was considered that creep deformation was controlled by the diffusion of W in the Ni rich phase between the grains and the deformation of grains. All of the specimens showed intergranular fracture by grain boundary cavitation and growth of cavity throughout the entire spcimen cross-section.

  • PDF

A study on prediction and improvement method of fire risk for a newly built college dormitory (신축 승선생활관의 화재 위험성 예측 및 개선방안에 관한 연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.228-234
    • /
    • 2016
  • As a college dormitory has the features of high dwelling density and a floating population that becomes crowded during particular times, when a disaster such as a fire occurs, it has the risk of causing much loss of life. In this study, the fire simulation program Fire Dynamics Simulator (FDS), is used to predict the risk when a fire occurs, to analyze the problem, and to suggest an improvement plan for a new cadet dormitory at an university in Korea. The research results are as follows. When a fire occurred in the ironing room inside the cadet dormitory, a smoke detector operated after 65 seconds. Thirteen seconds later, a sprinkler started to operate. The temperature and carbon monoxide density reached the limit value at 241 and 248 seconds, respectively. Because the limit visibility value was reached within 66 seconds after the occurrence of a fire, it is predicted that preparation must be finished and evacuation should begin within 1 minute after the fire occurs, in order to have no casualties. Synthesizing this dormitory fire risk prediction result, the visibility value is considered to be the most dangerous factor for personal safety. Because of this, installing a smoke extraction system is suggested to secure visibility. After the installation of a smoke extraction system, the problem of smoke diffusion in the corridors improved.

Development of Metal Loaded Activated Carbon Fiber for Eliminating Targeted VOCs Originated from Solvent(II) (특정용제 Target 형 활성금속첨착 활성탄소섬유의 개발(II))

  • Choi, Kang-Yong;Kim, Kwang-Su;Kim, Tae-Won;Jun, Min-Kee;Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.472-478
    • /
    • 2013
  • Cu and Cr as a base metal and Pt, Pd as a supportive metal were selected for improving adsorption capacity of activated carbon fiber in eliminating especially targeted VOCs. Preparing variables such as metal loading, loading temperature, loading hours and kinds of loaded metals were changed. Properties measurement was carried out by SEM (scanning electron microscope), XRF (x-ray fluorescence analysis) and EDX (Energy Dispersive X-ray spectrometer) and adsorption capacity evaluation were also performed by gas analyzer. Under this study, the adsorption capacity of complex metal loaded activated carbon fiber was improved positively than that of single metal loaded activated carbon fiber. And we found that the best conditions for metal loading were 5 hours loading time at $100^{\circ}C$ and the adsorption capacity was enhanced almost double compared with other condition based activated carbon fiber. Cu-Cr-Pt-Pd loaded activated carbon fiber showed the best adsorption capacity. Also we confirmed that more than 0.5 second is necessary for adsorbate diffusion and adsorption over activated carbon fiber.

Development on New Laser Tabbing Process for Modulation of Thin Solar Cell (박형 태양 전지 모듈화를 위한 레이져 태빙 자동화 공정(장비) 개발)

  • No, Donghun;Choi, Chul-June;Cho, Hyun Young;Yu, Jae Min;Kim, JungKeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • In solar cell module manufacturing, single solar cells has to be joined electrically to strings. Copper stripes coated with tin-silver-copper alloy are joined on screen printed silver of solar cells which is called busbar. The bus bar collects the electrons generated in solar cell and it is connected to the next cell in the conventional module manufacturing by a metal stringer using conventional hot air or infrared lamp soldering systems. For thin solar cells, both soldering methods have disadvantages, which heats up the whole cell to high temperatures. Because of the different thermal expansion coefficient, mechanical stresses are induced in the solar cell. Recently, the trend of solar cell is toward thinner thickness below 180um and thus the risk of breakage of solar cells is increasing. This has led to the demand for new joining processes with high productivity and reduced error rates. In our project, we have developed a new method to solder solar cells with a laser heating source. The soldering process using diode laser with wavelength of 980nm was examined. The diode laser used has a maximum power of 60W and a scanner system is used to solder dimension of 6" solar cell and the beam travel speed is optimized. For clamping copper stripe to solar cell, zirconia(ZrO)coated iron pin-spring system is used to clamp both joining parts during a scanner system is traveled. The hot plate temperature that solar cell is positioned during lasersoldering process is optimized. Also, conventional solder joints after $180^{\circ}C$ peel tests are compared to the laser soldering methods. Microstructures in welded zone shows that the diffusion zone between solar cell and metal stripes is better formed than inIR soldering method. It is analyzed that the laser solder joints show no damages to the silicon wafer and no cracks beneath the contact. Peel strength between 4N and 5N are measured, with much shorter joining time than IR solder joints and it is shown that the use of laser soldering reduced the degree of bending of solar cell much less than IR soldering.

  • PDF

The Correlation between Japanese Animation and Spyri's (일본 애니메이션 <알프스 소녀 하이디>와 슈피리 문학과의 연관성)

  • Park, Gi-Ryung
    • Cartoon and Animation Studies
    • /
    • s.37
    • /
    • pp.247-265
    • /
    • 2014
  • This essay is about the considering the mutual relevance of animation and literary work in a case. The television animation Heidi, Girl of the Alps made in Japan is the most famous media version of the original novel. The novel Heidi by the Switzerland writer Johanna Spyri has been translated in a lot of countries, and the original Heidi has been adapted for mass media - literary(translation), movie, play, animation, cartoon, picture book. Here, with the relation between animation Heidi, Girl of the Alps and Spyri's Heidi and the present condition of the change in Japan and Korea, the relevance of animation and literature was reconsidered. First, Heidi, Girl of the Alps and Heidi have the different characteristic as media, and the content has some different set-up. On the other hand, original soul is inherited in the animation. Second, the animation has affected Heidi related visual image and the original media diffusion. The above consideration from a viewpoint of the mutual relevance between media shows the importance to return aiming at mutual understanding of animation and literature and mutual value between the diversified media. Moreover, it suggests a possibility of leading to creation of the energy which results in transformation also to action.