The thallium-doped sodium iodide [NaI(Tl)] scintillation detector is preferred as a gamma spectrometer in many fields because of its general advantages. A silicon photomultiplier (SiPM) has recently been developed and its application area has been expanded as an alternative to photomultiplier tubes (PMTs). It has merits such as a low operating voltage, compact size, cheap production cost, and magnetic resonance compatibility. In this study, an array of SiPMs is used to develop an NaI(Tl) gamma spectrometer. To maintain detection efficiency, a commercial NaI(Tl) $2^{\prime}{\times}2^{\prime}$ scintillator is used, and a light guide is used for the transport and collection of generated photons from the scintillator to the SiPMs without loss. The test light guides were fabricated with polymethyl methacrylate and reflective materials. The gamma spectrometer systems were set up and included light guides. Through a series of measurements, the characteristics of the light guides and the proposed gamma spectrometer were evaluated. Simulation of the light collection was accomplished using the DETECT 97 code (A. Levin, E. Hoskinson, and C. Moison, University of Michigan, USA) to analyze the measurement results. The system, which included SiPMs and the light guide, achieved 14.11% full width at half maximum energy resolution at 662 keV.
국내 가압 경수로는 핵연료 재장전후 해당 주기 노심핵설계의 타당성 및 안선 제한치의 만족 여부를 확인하기 위하여 저출력에서 노물리 시험을 수행한다. 그러나 고리 3호기 7주기를 포함한 일부 저출력 노물리 시험 중 step 반응도를 삽입한 후에도 반응도가 서서히 증가하는 기이한 현상이 나타났다. 이러한 현상은 시험시 중성자속 준위가 낮고 노외 핵계측기로 비보상형 전리함을 사용하기 때문에 감마 background가 존재하여 생기는 것이다. 이로 인해 노물리 시험 결과는 많은 오차를 포함할 수도 있는 것이다. 본 연구에서는 반응도가 증가하는 현상을 정량적으로 분석하고 기준 제어봉 제어능 측정 시험을 모사함으로써 노물리 시험 결과의 오차를 줄일 수 있는 방법을 제시하고 이후의 노물리 시험에 적용하여 확인하였다. 또한 감마 background 준위를 산정한 후 중성자속 준위를 조정하여 기준 제어봉 제어능 측정 시험을 통해 감마 background의 영향을 받지 않는 중성자속 준위를 결정하였다. 결정된 중성자속 준위는 핵가열이 발생하는 중성자속의 3/10이다. 이것은 기존의 상한치보다 3배 증가된 것이다. 이 결과는 고리 4호기 7주기 및 영광 1호기 7주기 노물리 시험에 성공적으로 적용되었다.
현재 개발 중인 휴대용 XRF (X-Ray Fluorescence) 장치의 검출감도를 향상시키기 위한 방법을 논의하였다. 대기 기체분자에 의한 강도 손실을 최소화하기 위하여 시료와 검출기 사이에 Vacuum module을 설치하였다. Vacuum module은 대기기체 또는 He 기체를 채울 수 있도록 고안하였다. 그리고 Vacuum module 내부에 He 기체를 채운 상태, 또는 진공상태에서 검출감도의 변화를 조사하였다. 그 결과 다음 3가지 중요한 결과를 얻었다. 첫 번째는, 낮은 에너지 영역(3~4 keV)에서의 XRF 강도가 2~4배 정도 증가하였다. 검출감도의 향상은 검출시간의 단축을 의미하기 때문에, 휴대용 XRF 장치에 있어서 매우 중요한 결과이다. 두 번째는, x-ray emission line의 에너지가 3 keV 이하인 원소의 검출 가능성을 확인하였다. 세 번째는, He 기체를 채운 vacuum module을 사용하면, 휴대용 XRF 장치에 진공밀폐용기를 쓰지 않으면서도 대기기체분자에 의한 흡수를 최소화할 수 있다는 것이다. 세 가지 모두 휴대용 XRF 장치의 개발에 있어서 매우 의미있는 결과로 판단된다.
자연 방사선 피폭선량 중 우주선 전리 성분의 기여를 정량하기 위하여 LiF TLD를 이용하여 약 1년반에 걸쳐 3개월 간격의 주기적 측정을 수행하였다. TLD는 세 가지를 사용하였는데 그것은 칩과 PTFE원판형으로 된 두 가지의 $^{7}LiF$와 중성자 성분의 기여를 가려내기 위한 원판형의 $^{6}LiF$였다. 선량 측정은 뱃지에 넣은 TLD를 충남대학교 대덕 캠퍼스의 한4층 콘크리트 건물내 3층의 한 연구실에 설치한 10-15cm 두께의 납차폐 상자에 넣어서 90일 간격으로 다섯주기 동안 수행하였다. 비교 연구를 위하여 3'${\phi}\;{\times}\;3$'원통형NaI(Tl) 섬광 검출기와 1024채널 MCA를 이용하여 3MeV 이상의 우주선 경성분에 대한 분광분석을 병행하였는데 그 결과 옥내 차폐체를 이용한 TLD측정치는 옥외 우주선 전리 성분의 약 75%를 측정하고 있음이 밝혀졌다. 이와 같은 차폐 손실을 보정한 TLD측정 결과에 의하면 충남대 대덕 캠퍼스 옥외에서 우주선 전리 성분의 기여는 $34.3{\pm}1.1nGy-h^{-1}$로 나타났는데 이것은 이 측정 지점에서 예측할 수 있었던 선량 값과 매우 잘 일치하는 것이다.
본 연구의 목적은 GATE (Geant4 Application for Tomographic Emission) Simulation을 사용하여 치료용 방사성동위원소인 I-131의 감마카메라/SPECT 영상을 획득하여, 실제 기기의 실험결과와 그 특성을 비교 및 분석 하여 GATE simulation의 정확성을 획득하는 것이다. 더 나아가 GATE simulation을 이용한 치료용 방사성동위원소를 위한 감마카메라/SPECT 영상 정량화 기반기술 연구가 가능함을 입증하고자 한다. 본 연구에서 Simulation상에서 구성한 SPECT System은 Stream-R Forte version 1.2 (Philips Medical System, Best and Heerlen, Netherlands)의 설계변수를 참고로 하였다. 감마카메라/SPECT 시스템에서의 I-131 영상특성을 이해하기 위하여 실제 Forte 시스템을 이용하여 산란물질을 사용하였을 때와 사용하지 않았을 때 에너지 스펙트럼 및 선 선원에 대한 선 응답함수 (Line Spread Function, LSF)와 반치폭 (Full Width at Half Maximum, FWHM)을 측정하였다. 또한 실제 실험과의 비교를 위하여 GATE simulation에서 구성한 시스템에서도 동일한 실험 조건 및 변수에 대하여 에너지 스펙트럼 및 선 선원에 대한 LSF 및 FWHM을 측정하였다. 그 결과 산란물질을 사용하지 않았을 때의 에너지 스펙트럼의 경우 실제 실험과 Simulation 모두 364 keV의 위치에서 에너지 피크를 나타내어 동일한 경향의 결과를 보였다. FWHM은 실제 실험과 Simulation 모두에서 선원과 검출기간의 거리가 증가함에 따라 그 크기가 증가하는 경향을 보였으며 오차율은 3.8%로 나타났다. 산란물질을 사용하였을 때의 에너지 스펙트럼 역시 실제 실험과 Simulation 경우 모두에서 비슷한 경향을 나타내었다. 결론적으로, GATE simulation은 치료용 방사성 동위원소에 대해서도 실제 기기의 특성 및 방사성 동위원소의 특징을 모두 반영하고 있으며 이를 이용하여 감마카메라/SPECT에서의 치료용 방사성 동위원소의 정량화에 대한 다양한 연구가 가능 할 것이라고 사료된다.
팬톰내에 삽입되는 전리함은 전자 플루언스의 교란을 최소화하는 기하학적 구조를 갖는 것이 바람직한데 평행평판형 전리함은 다른 어떤 전리함보다도 이러한 조건을 잘 만족시킨다. 이러한 이유로 IAEA 표준측정법에서는 표면 평균 에너지가 10 MeV 이하인 전자선 측정시 평행평판형 전리함의 사용을 권고하고 있으나 일반적으로 편의상 원통형 전리함을 많이 사용하고 있는 실정이다. 본 연구에서는 네 가지 다른 표준 측정법 즉 1)원통형 전리함을 사용한 IAEA 표준 측정법 2)원통형 전리함을 사용한 TG-21 표준 측정법 3)평행평판형 전리함을 사용한 Markus 측정법 4)평행평판형 전리함을 원통형 전리함에 대하여 교정한 TG 39 측정법을 사용하여 서로 다른 측정법과 전리함의 차이에 의한 선량 값의 변화를 알아보고자 한다. Siemens KD-2 선형가속기에서 발생하는 고에너지 전자선(6,9,12,15,18 MeV)을 이용하여 3차원 전산화 물팬톰과 0.125 cc 전리함을 사용하여 각 에너지별로 l0$\times$10 $cm^2$ cone size의 심부선량백분율을 구하였다. 고체 물팬톰내에서 Farmer type 0.6cc 원통형 전리함을 사용하여 IAEA 표준 측정법과 TG-21 표준 측정법에 의해서 각 에너지별로 흡수선량을 측정하였다. 평행평판형 전리함(Markus Chamber)을 사용하여 Markus 측정법에 의해서 각 에너지별로 흡수선량을 측정하였다. 전자선 에너지 18 MeV를 사용하여 원통형 전리함에 대한 평행평판형 전리함의 교정계수를 얻고 TG 39 측정법에 의해서 각 에너지별로 흡수선량을 측정하였다. Cone size 는 l0$\times$10 $cm^2$ 이었고 측정점의 깊이는 d$_{max}$ 이었다. IAEA 표준 측정법과 TG 21 표준 측정법은 18 MeV 에 대하여 0.9 % 의 차이가 나타났고 그 외의 에너지 영역에서 0.7% 이내로 비교적 잘 일치하였다. Markus 측정법과 TG 39 측정법은 18 MeV 와 6 MeV 에 대하여 각각 $\pm$0.8 % 의 차이가 나타났고 그 외의 에너지 영역에서 0.5 % 이내로 잘 일치하였다. 원통형 전리함과 평행평판형 전리함을 이용한 측정법간의 차이는 18 MeV 에서 1.6 % 까지 나타나므로 주의를 요하며 TG 39 측정법에서 제시한 다른 측정방법을 사용하여 측정을 하여 교정계수를 얻을 필요가 있을 것으로 생각된다.다.
본 연구에서는 고온고압 건식탈황장치를 이용하여 고체순환량과 탈황반응기 내의 공극률에 대한 수력학적특성을 파악하고, 아연계 탈황제의 고온고압 조건에서 탈황반응온도에 대한 반응특성 및 연속운전을 통한 탈황 효율을 분석하였다. 실험에 사용된 고온고압건식탈황장치는 고속유동층 형태의 탈황반응기(내경: 0.015 m, 높이: 6.2 m), 기포유동층 형태의 재생반응기(내경: 0.053 m, 높이: 1.6 m), 가스의 역흐름을 방지하는 loop-seal, 두 반응기 후단에 압력컨트롤밸브로 구성되어있다. 수력학 특성으로는 고체순환밸브 개구비, 탈황반응기 가스 유속, 탈황반응기 온도 변화에 따른 고체순환량과 각 조건에서의 고속유동층 형태의 탈황반응기 높이에 따른 공극률 분포를 알아보았다. 고체순환량은 동일한 유속조건, 동일한 고체순환밸브 개구비에서 탈황반응기 온도가 상온일 때보다 $300^{\circ}C$와 $550^{\circ}C$일 때 감소하였으며 $300^{\circ}C$와 $550^{\circ}C$ 조건에서는 큰 차이가 없었다. 탈황반응기내의 공극률은 고체순환밸브 개구비가 10~20%로 고체순환량이 적은 경우 고속유동층 형태의 공극률 분포를 보이고, 30~40%로 고체순환량이 많아지는 경우 탈황반응기 하부에서 turbulent 형태의 공극률의 분포를 나타냈다. 아연계 탈황제의 탈황반응온도에 따른 반응특성은 시스템 압력 20 atm, 연속 반응 조건에서 탈황 온도를 변화시키면서 살펴보았다. 일정한 고체순환 조건에서 탈황온도 $450^{\circ}C$ 이하에서 탈황 효율 저하가 시작되는 것을 확인하였으며, 높은 탈황 효율을 유지시키기 위하여 10시간 연속운전에서는 탈황 반응 온도를 $500^{\circ}C$로 설정하여 실험하였다. 실험 결과, 10시간 연속운전을 통해, 유입 $H_2S$ 농도 5,000 ppmv 조건에서 탈황 반응기 후단 $H_2S$ 농도는 UV분석기(Radas2)와 검지관(GASTEC)의 검출한계인 1 ppmv 이하를 유지하여 $H_2S$ 제거 효율 99.99% 이상을 달성하였다.
본 연구의 목적은 붕소 중성자 포획 치료 시 집적된 붕소 영역에서 중성자 선속의 변화와 그에 따른 방출된 즉발 감마선의 검출 시뮬레이션을 통하여 치료 영역에 대한 영상화의 가능성을 확인하고자 함이다. 전산 모사를 통하여 (1) 붕소 유무에 따른 중성자의 영향, (2) 내부와 외부에서의 즉발 감마선량 검출, (3) 즉발 감마선에 대한 에너지 스펙트럼 검출을 수행하였다. 모든 전산 모사는 Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA)를 이용하여 가상의 물 팬텀과 열중성자(thermal neutron) 소스, 붕소 영역을 지정하였다. 열중성자의 에너지는 1 eV 이하의 에너지였으며 선속은 2,000,000 n/sec.로 설정하였다. 이 때, 발생된 즉발 감마선의 검출은 물 팬텀과 수직 방향으로 위치시키고 납으로 둘러싸인 lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) 섬광체 검출기를 이용하였다. 붕소가 존재하는 영역인 5 cm 깊이에서의 28 분할로서 대략 0.18 cm의 bin을 도출하여 붕소 영역의 얕은 깊이에서부터 급격하게 저하되는 것을 확인하였다. 또한 붕소 영역이 시작되는 지점인 9 cm 깊이에서 감마선의 피크 레벨을 확인하였다. 그리고 478 keV 지점에서 정확한 즉발 감마선 피크가 관찰되는 것을 확인하였다. 478 keV의 즉발 감마선 피크는 41 keV의 반치폭으로 에너지 분해능 값은 8.5%로 측정되었다. 결론적으로 붕소 중성자 포획 치료 시 발생되는 즉발 감마선의 계측으로 치료가 행해지는 부위를 감마 카메라 또는 단일 광자 방출 단층 촬영 기기에서 영상화할 수 있는 가능성을 확인하였다.
목 적: 유방암 환자의 방사선치료 시 엎드린 자세를 적용하면 폐와 심장에 들어가는 선량을 줄일 수 있다. 하지만 빔 방향에 포함되는 couch의 영향으로 피부선량 증가 및 심부선량이 감소한다. 따라서 본 실험에서는 air gap을 이용해서 couch로 인한 영향을 줄일 수 있는 방법을 알아보고자 하였다. 대상 및 방법: 본원에서 치료 받은 유방암 환자의 전산화단층영상을 바탕으로 3D 프린터(Builder Extreme 1000)를 이용하여 체적을 동일하게 묘사한 인체모형을 제작하였다. 제작한 인체모형을 전산화단층촬영하고 전산화치료계획시스템(Eclipse 13.6, Varian, USA)을 이용하여 6MV, Field-in-Field technique을 이용한 200 cGy/fx의 치료계획을 수립하였다. 피부선량 측정을 위해 내, 외측 4 지점(Med 1, Med 2, Lat 1, Lat 2)에서 광자극발광선량계(Optically Stimulated Luminescence Detector, OSLD)를 이용한 측정을 진행하였고, 심부선량 측정을 위해 유방의 전면과 후면의 2 지점(Anterior, Posterior)에서 FC65-G ion-chamber를 이용한 측정을 하였다. Couch와 인체모형 사이의 air gap(기준 3 cm)을 1 cm 씩 총 6 cm까지 증가시켜가며 측정하였으며 치료계획 선량을 기준으로 평가하였다. 결 과: 피부선량 측정 결과 외측 지점은 치료계획과 비교하여 ${\pm}5%$ 이내의 유사한 값을 보였다. 내측 1 지점은 air gap이 증가할수록 감소하며 3 cm 이상부터 7 % 이상 감소하였고, 내측 2 지점은 4 % 이상 감소하였다. 심부선량 측정 결과 후면 지점은 air gap 차이에 의한 선량변화가 ${\pm}1%$ 이내의 값을 보였다. 전면 지점의 선량은 air gap이 증가할수록 높아지며 3 cm 이상부터 치료계획 보다 4 % 증가한 값을 보였다. 결 론: 본 실험을 통해 couch와 인체모형 사이의 air gap을 특정 거리까지 증가시켰을 때 couch로 인한 피부선량과 심부선량의 영향이 감소함을 확인하였다. 따라서 유방암 환자에 대한 치료 전 선량평가를 진행하여 각 환자에게 최적의 air gap을 적용한다면 피부보효 효과를 높일 수 있고, 정확한 심부선량의 전달이 가능할 것으로 사료된다.
본 논문에서는 국내 의료기관 종사자 중 핵의학과 종사자 일부를 선정하여 방사성동위원소에 의한 체내오염 여부와 정도를 정량적으로 측정한 후 그 결과에 근거하여 선량을 평가하였다. 선량평가를 위해 서울시내에 소재하는 대형병원 3곳의 핵의학과 종사자 25명을 측정 대상자로 선정한 후 각 개인의 소변시료를 채취하여 측정하였다. 시료는 주 1회 채취하였으며 종사자에 따라 6~10회에 걸쳐 각 회당 100~200 mL 정도의 양을 채취한 후 고순도게르마늄반도체검출기를 사용하여 시료를 측정 하였다. 측정된 결과에 근거하여 방사성동위원소의 섭취량을 평가하였고 예탁유효선량을 평가하는 도구로 IMBA 전산프로그램을 사용하였다. IMBA 프로그램으로 평가가 불가능한 반감기가 매우 짧은 $^{99m}Tc$, $^{123}I$ 등과 같은 핵종에 의한 선량은 국제원자력기구에서 권고하는 방법을 적용하여 선량을 평가하였다. 채취한 소변시료를 대상으로 방사성핵종을 계측, 분석한 결과 $^{99m}Tc$, $^{123}I$, $^{131}I$, $^{201}Tl$ 핵종 등이 검출되었고 양전자방출단층 촬영에 사용되는 $^{18}F$ 핵종도 검출되었다. 계측된 결과로부터 평가된 예탁유효선량은 0~5 mSv의 분포를 보였으나 대부분 1mSv 미만으로 나타났다. 1 mSv를 초과한 종사자는 모두 3명으로 이들 모두는 선원의 분배와 취급에 직접적으로 참여한 종사자들이었고 간호사의 경우 1 mSv를 초과한 사람이 한 사람도 발생하지 않았다. 그러나 보다 정확하고 상세한 결과를 도출하기 위해서는 계절적 요인을 구분하기 위한 장기적인 연구가 필요하며 측정대상자의 수를 확대할 필요가 있을 것으로 판단된다. 현재로서는 대부분의 핵의학과 종사자들은 방사성 핵종에 의한 체내오염 정기 감시를 실시할 필요가 없을 것으로 여겨지며 그에 따른 방사선학적인 건강상의 영향도 우려할 필요가 없는 것으로 판단되지만 불필요한 소량의 피폭이라도 줄이기 위해서는 주기적으로 작업환경을 측정하거나 공기 중 방사성핵종 농도 감시를 가능한 한 자주 실시하는 것이 바람직 할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.