Dosimetric effects of couch attenuation and air gaps on prone breast radiation therapy

Prone Breast Phantom을 이용한 couch 산란영향 평가

  • Kim, Min Seok (Department of Radiation Oncology, ASAN Medical Center) ;
  • Jeon, Soo Dong (Department of Radiation Oncology, ASAN Medical Center) ;
  • Bae, Sun Myeong (Department of Radiation Oncology, ASAN Medical Center) ;
  • Baek, Geum Mun (Department of Radiation Oncology, ASAN Medical Center) ;
  • Song, Heung Gwon (Department of Radiation Oncology, ASAN Medical Center)
  • 김민석 (서울아산병원 방사선종양학과) ;
  • 전수동 (서울아산병원 방사선종양학과) ;
  • 배선명 (서울아산병원 방사선종양학과) ;
  • 백금문 (서울아산병원 방사선종양학과) ;
  • 송흥권 (서울아산병원 방사선종양학과)
  • Published : 2017.12.29

Abstract

Purpose: The purpose of this study is to evaluate the dosimetric effects of couch attenuation and air gaps using 3D phantom for prone breast radiation therapy. Materials and method: A 3D printer(Builder Extreme 1000) and computed tomography (CT) images of a breast cancer patient were used to manufacture the customized breast phantom. Eclipse External Beam Planning 13.6 (Varian Medical Systems Palo Alto, CA, USA) was used to create the treatment plan with a dose of 200 cGy per fraction with 6 MV energy. The Optically Stimulated Luminescence Detector(OSLD) was used to measure the skin dose at four points (Med 1, Med 2, Lat 1, Lat 2) on the 3D phantom and ion-chamber (FC65-G) were used to perform the in-vivo dosimetry at the two points (Anterior, Posterior). The Skin dose and in-vivo dosimetry were measured with reference air gap (3 cm) and increased air gaps (1, 2, 3, 4, 5, 6 cm) from reference distance between the couch and 3D phantom. Results: As a result, measurement for the skin dose at lateral point showed a similar value within ${\pm}4%$ compared to the plan. While the air gap increased, skin dose at medial 1 was reduced. And it was also reduced over 7 % when the air gap was more than 3 cm compared to radiation therapy plan. At medial 2 it was reduced over 4 % as well. The changes of dose from variety of the air gap showed similar value within ${\pm}1%$ at posterior. As the air gap was increased, the dose at anterior was also increased and it was increased by 1 % from the air gap distance more than 3 cm. Conclusion: Dosimetrical measurement using 3D phantom is very useful to evaluate the dosimetric effects of couch attenuation and air gaps for prone breast radiation therapy. And it is possible to reduce the skin dose and increase the accuracy of the radiation dose delivery by appling the optimized air gap.

목 적: 유방암 환자의 방사선치료 시 엎드린 자세를 적용하면 폐와 심장에 들어가는 선량을 줄일 수 있다. 하지만 빔 방향에 포함되는 couch의 영향으로 피부선량 증가 및 심부선량이 감소한다. 따라서 본 실험에서는 air gap을 이용해서 couch로 인한 영향을 줄일 수 있는 방법을 알아보고자 하였다. 대상 및 방법: 본원에서 치료 받은 유방암 환자의 전산화단층영상을 바탕으로 3D 프린터(Builder Extreme 1000)를 이용하여 체적을 동일하게 묘사한 인체모형을 제작하였다. 제작한 인체모형을 전산화단층촬영하고 전산화치료계획시스템(Eclipse 13.6, Varian, USA)을 이용하여 6MV, Field-in-Field technique을 이용한 200 cGy/fx의 치료계획을 수립하였다. 피부선량 측정을 위해 내, 외측 4 지점(Med 1, Med 2, Lat 1, Lat 2)에서 광자극발광선량계(Optically Stimulated Luminescence Detector, OSLD)를 이용한 측정을 진행하였고, 심부선량 측정을 위해 유방의 전면과 후면의 2 지점(Anterior, Posterior)에서 FC65-G ion-chamber를 이용한 측정을 하였다. Couch와 인체모형 사이의 air gap(기준 3 cm)을 1 cm 씩 총 6 cm까지 증가시켜가며 측정하였으며 치료계획 선량을 기준으로 평가하였다. 결 과: 피부선량 측정 결과 외측 지점은 치료계획과 비교하여 ${\pm}5%$ 이내의 유사한 값을 보였다. 내측 1 지점은 air gap이 증가할수록 감소하며 3 cm 이상부터 7 % 이상 감소하였고, 내측 2 지점은 4 % 이상 감소하였다. 심부선량 측정 결과 후면 지점은 air gap 차이에 의한 선량변화가 ${\pm}1%$ 이내의 값을 보였다. 전면 지점의 선량은 air gap이 증가할수록 높아지며 3 cm 이상부터 치료계획 보다 4 % 증가한 값을 보였다. 결 론: 본 실험을 통해 couch와 인체모형 사이의 air gap을 특정 거리까지 증가시켰을 때 couch로 인한 피부선량과 심부선량의 영향이 감소함을 확인하였다. 따라서 유방암 환자에 대한 치료 전 선량평가를 진행하여 각 환자에게 최적의 air gap을 적용한다면 피부보효 효과를 높일 수 있고, 정확한 심부선량의 전달이 가능할 것으로 사료된다.

Keywords

References

  1. Central Cancer Registry Center in Korea. Cancer Facts & Figures 2017. Seoul: Ministrty of Health and Welfare; 2017.
  2. Haffty BG, Buchholz TA, Perez CA. Early stage breast cancer. In: Halperin EC, Perez CA, Brady LW, eds. Principles and Practice of Radiation Oncology. 5th ed. Philadelphia, Lippincott Williams & Wilkins. 2007:1175-1291.
  3. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10801 women in 17 randomized trials. Lancet. 2011;378:1707-1716. https://doi.org/10.1016/S0140-6736(11)61629-2
  4. 김진희, 변상준. Long-term Results of Breast-conserving Surgery and Radiation Therapy in Early Breast Cancer. 대한방사선종양학회지. 2009;3:153-162.
  5. Lopez E, Nunez MI, Guerrero MR, et al. Breast cancer acute radiotherapy morbidity evaluated by different scoring systems. Breast Cancer Res Treat 2002;73:127-13. https://doi.org/10.1023/A:1015296607061
  6. Collen EB, Mayer MN. Acute effects of radiation treatment: skin reactions. Can Vet J 2006;47:931-935.
  7. Fujishiro S, Mitsumori M, Kokubo M, et al. Cosmetic results and complications after breast conserving therapy for early breast cancer. Breast Cancer 2000;7:57-63. https://doi.org/10.1007/BF02967189
  8. Das Indra J, Cheng Elizabeth C, Freedman Gary, Fowble Barbara. Lung and heart dose volume analyses with CT simulator in radiation treatment of breast cancer. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 1998;42;11-19.
  9. Mahe Marc-Andre, Classe Jean-Marc, Dravet Francois, et al. Preliminary results for prone-position breast irradiation. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS. 2001;52;156-160.
  10. Buijsen Jeroen, Jager Jos J, Bovendeerd Janneke, et al. Prone breast irradiation for pendulous breasts. Radiotherapy and Oncology 2006;82;337-340.
  11. Stewart J. Becker, Carl Elliston, Keith DeWyngaert, et al. Breast radiotherapy in the prone position primarily reduces the maximum out of field measured dose to the ipsilateral lung. Medical Physics 2012;39;2417-2423. https://doi.org/10.1118/1.3700402
  12. Kirby Anna M, Evans Philip M, Dono Fasihah Hanum Yusof, Ngie Min Ung, Jeannie Hsiu Ding Wong1van Ellen M, et al. Prone versus supine positioning for whole and partial-breast radiotherapy: A comparison of non-target tissue dosimetry. Radiotherapy and Oncology 2010;96;178-184. https://doi.org/10.1016/j.radonc.2010.05.014
  13. Goodman Karyn A, Hong Linda, Wagman Raquel, et al. Dosimetric analysis of a simplified intensity modulation technique for prone breast radiotherapy. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 2004;60;95-102. https://doi.org/10.1016/j.ijrobp.2004.02.016
  14. De Puysseleyr A, De Neve W, De Wagter C. A patient immobilization device for prone breast radiotherapy: Dosimetric effects and inclusion in the treatment planning system. Physica Medica 2016;32;758-766. https://doi.org/10.1016/j.ejmp.2016.04.013
  15. Fasihah Hanum Yusof1, Ngie Min Ung ,Jeannie Hsiu Ding Wong, et al. On the Use of Optically Stimulated Luminescent Dosimeter for Surface Dose Measurement during Radiotherapy, PLOS ONE, 2015;10(6).