• Title/Summary/Keyword: Energy Converting

Search Result 274, Processing Time 0.033 seconds

The development of conductive 10B thin film for neutron monitoring (중성자 모니터링을 위한 전도성 10B 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Jung, Yongju;Choi, Young-Hyun;Baek, Cheol-Ha;Moon, Myung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • In the field of neutron detections, $^3He$ gas, the so-called "the gold standard," is the most widely used material for neutron detections because of its high efficiency in neutron capturing. However, from variable causes since early 2009, $^3He$ is being depleted, which has maintained an upward pressure on its cost. For this reason, the demands for $^3He$ replacements are rising sharply. Research into neutron converting materials, which has not been used well due to a neutron detection efficiency lower than the efficiency of $^3He$, although it can be chosen for use in a neutron detector, has been highlighted again. $^{10}B$, which is one of the $^3He$ replacements, such as $BF_3$, $^6Li$, $^{10}B$, $Gd_2O_2S$, is being researched by various detector development groups owing to a number of advantages such as easy gamma-ray discrimination, non-toxicity, low cost, etc. One of the possible techniques for the detection is an indirect neutron detection method measuring secondary radiation generated by interactions between neutrons and $^{10}B$. Because of the mean free path of alpha particle from interactions that are very short in a solid material, the thickness of $^{10}B$ should be thin. Therefore, to increase the neutron detection efficiency, it is important to make a $^{10}B$ thin film. In this study, we fabricated a $^{10}B$ thin film that is about 60 um in thickness for neutron detection using well-known technology for the manufacturing of a thin electrode for use in lithium ion batteries. In addition, by performing simple physical tests on the conductivity, dispersion, adhesion, and flexibility, we confirmed that the physical characteristics of the fabricated $^{10}B$ thin film are good. Using the fabricated $^{10}B$ thin film, we made a proportional counter for neutron monitoring and measured the neutron pulse height spectrum at a neutron facility at KAERI. Furthermore, we calculated using the Monte Carlo simulation the change of neutron detection efficiency according to the number of thin film layers. In conclusion, we suggest a fabrication method of a $^{10}B$ thin film using the technology used in making a thin electrode of lithium ion batteries and made the $^{10}B$ thin film for neutron detection using suggested method.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Studies on the Nitrogenous Utilization and Basal Metabolism of Korean Native Goat (한국(韓國) 재래산양(在來山羊)의 질소대사(窒素代謝) 및 기초대사량(基礎代謝量)에 관(關)한 연구(硏究))

  • Oh, Hong Rock
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.2
    • /
    • pp.546-555
    • /
    • 1982
  • To evaluate the digestibility and absorbability of proteins, and the rates of energy and nitrogen(N) metabolism of the Korean native goats, studies were carried out with open type respiration apparatus based on the nitrogen-carbon method. The results on the nitrogen retention and the metabolic rate of energy, which was obtained with one male (10-month-old) and one female (24-month-old) goats, both weighing ${\simeq}20kg$, are summarized as follows. 1. When the goats were fed ad libitum the medium quality orchard grass hay, they consumed hay about 0.66 to 0.92% of body weight per day. The hay intake was remained the same even when high quality hay was provided. This amount of hay intake was relatively lower than that of dairy goat and sheep. It was believed to be partly due to the change in feeding enviroment. When fed with hay and soybean meal together, the goats ate hay about 1.06% and soybean meal about 0.60% of body weight, corresponding to 1.66% of body weight as fed basis. 2. The $CO_2$ gas produced from the goat in the open type respiration chamber and absorbed with KOH solution was estimated to be 99~117g/day. The difference in feed intake did not influence the $CO_2$ production; however, these seems to be a linea relationship between body weight and $CO_2$ production. 3. When fed orchard grass hay only, the goats showed protein digestibility of 24~41%. The protein digestibility incresed to 58.2% when fed hay and soybean meal together. A negative nitrogen balance(-0.16g N/day) was observed with goats fed 11.53g N originated from 212g hay and 150g soybean meal. Converting that nitrogen ingested to a crude protein, the amount of crude protein intake by the goats per day was 77.9g compared to 40~45g N known to be required in a day by goat weighing 20kg, indicating that the extra protein ingested was metabolized to provide energy. 4. When the male and female goats comsumed 624 kcal gross energy and 824 kcal gross energy by consuming 158g and 213g of hay, respectively, the digestible energy intake was calculated to be 260kcal for the male and 199kcal for the female goat. The daily heat production of male and female goats were 338kcal and 334kcal, respectively, when fed hay only. However, the female goat fed 212g hay and 150g soybean meal produced about 591kcal per day. Consequently, the energy requirment of the Korean native goats weighing ${\simeq}20kg$ was concluded to be $${\geq_-}$$600kcal net energy per day. 5. The fasting heat product ion of a male goat weighing 27.7kg was 412kcal per day when fasted for 2~3 days. When fasted for 3~4 days, the value decresed to 240kcal. The enviromental temperatures during the expreimental period were ranged from 19 to $34.5^{\circ}C$. The goats seemed to be panting when the chamber temperature rose to $32^{\circ}C$ or above. 6. When fed low levels of dietary protein, serum protein levels of the goats were decresed slightly ($${\leq_-}$$10%); however, urea content in the serum was observed to decrese to a great extent (3X).

  • PDF

The Principles of Fractal Geometry and Its Applications for Pulp & Paper Industry (펄프·제지 산업에서의 프랙탈 기하 원리 및 그 응용)

  • Ko, Young Chan;Park, Jong-Moon;Shin, Soo-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • Until Mandelbrot introduced the concept of fractal geometry and fractal dimension in early 1970s, it has been generally considered that the geometry of nature should be too complex and irregular to describe analytically or mathematically. Here fractal dimension indicates a non-integer number such as 0.5, 1.5, or 2.5 instead of only integers used in the traditional Euclidean geometry, i.e., 0 for point, 1 for line, 2 for area, and 3 for volume. Since his pioneering work on fractal geometry, the geometry of nature has been found fractal. Mandelbrot introduced the concept of fractal geometry. For example, fractal geometry has been found in mountains, coastlines, clouds, lightning, earthquakes, turbulence, trees and plants. Even human organs are found to be fractal. This suggests that the fractal geometry should be the law for Nature rather than the exception. Fractal geometry has a hierarchical structure consisting of the elements having the same shape, but the different sizes from the largest to the smallest. Thus, fractal geometry can be characterized by the similarity and hierarchical structure. A process requires driving energy to proceed. Otherwise, the process would stop. A hierarchical structure is considered ideal to generate such driving force. This explains why natural process or phenomena such as lightning, thunderstorm, earth quakes, and turbulence has fractal geometry. It would not be surprising to find that even the human organs such as the brain, the lung, and the circulatory system have fractal geometry. Until now, a normal frequency distribution (or Gaussian frequency distribution) has been commonly used to describe frequencies of an object. However, a log-normal frequency distribution has been most frequently found in natural phenomena and chemical processes such as corrosion and coagulation. It can be mathematically shown that if an object has a log-normal frequency distribution, it has fractal geometry. In other words, these two go hand in hand. Lastly, applying fractal principles is discussed, focusing on pulp and paper industry. The principles should be applicable to characterizing surface roughness, particle size distributions, and formation. They should be also applicable to wet-end chemistry for ideal mixing, felt and fabric design for papermaking process, dewatering, drying, creping, and post-converting such as laminating, embossing, and printing.

Integrated Wet Oxidation and Aerobic Biological Treatment of the Quinoline Wastewater (퀴놀린 폐수의 습식산화와 호기성 생물학적 통합처리)

  • Kwon, S.S.;Moon, H.M.;Lee, Y.H.;Yu, Yong-Ho;Yoon, Wang-Lai;Suh, Il-Soon
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2008
  • The treatment of a model wastewater containing quinoline in an integrated wet oxidation-aerobic biological treatment was investigated. Partial wet oxidation under mild operating conditions was capable of converting the original quinoline to biodegradable organic acids such as nicotinic, formic and acetic acid, the solution of which was subjected to the subsequent aerobic biological treatment. The wet oxidation was carried out at 250$^{\circ}C$ and the initial pH of 7.0, and led to effluents of which nicotinic acid was oxidized through 6-hydroxynicotinic acid by a Bacillus species in the subsequent aerobic biological treatment. Either homogeneous catalyst of $CuSO_4$ or phenol, which is more degradable in the wet oxidation compared to quinoline, was also used for increasing the oxidation rate in the wet oxidation of quinoline at 200$^{\circ}C$. The oxidation of quinoline in the catalytic wet oxidation and the wet co-oxidation with phenol resulted in effluents of which nicotinic acid was biodegradable earlier in the aerobic biological treatment compared to those out of the non-catalytic wet oxidation at 250$^{\circ}C$. However, the lag phase in the biodegradation of nicotinic acid formed out of the wet oxidation at 250$^{\circ}C$ was considerably shortened after the adaptation of Bacillus species used in the aerobic biological treatment with the effluents of the quinoline wet oxidation.

A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature: As an Anode Media of SO-DCFC (SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구)

  • Yu, Jun Ho;Kang, Kyungtae;Hwang, Jun Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.677-685
    • /
    • 2014
  • A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for $Li_2CO_3$, $K_2CO_3$, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it.

A analysis of friction relation between tennis outsole and tennis playing surfaces (테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석)

  • Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.361-380
    • /
    • 2002
  • The purposes of this study were to a analysis of friction relation between tennis outsole and tennis playing surfaces. Tennis footwear is an important component of tennis game equipment. It can support or damage players performance and comfort. Most importantly athletic shoes protect the foot preventing abrasions and injuries. Footwear stability in court sports like tennis is incredibly important since it is estimated that as many as 45% of all lower extremity injuries occur in the foot and ankle. The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. The friction force opposes the motion of the object. Friction results when two surfaces are pressed together closely, causing attractive intermolecular forces between the molecules of the two different surfaces. The outsole provides traction and reduces wear on the midsole. Today's outsoles address sport specific movements (running versus pivoting) and playing surface types. Different areas of the outsole are designed for the distinct frictional needs of specific movements. Traction created by the friction between the outsole and the surface allows the shoe to grip the surface. As surfaces, conditions and player motion change, traction may need to vary. An athletic shoe needs to grip well when running but not when pivoting. Laboratory tests have demonstrated force reductions compared to impact on concrete. There is a correlation between pain, injury and surface hardness. These are a variety of traction patterns on the soles of athletic shoes. Traction like any other shoe characteristic must be commensurate and balanced with the sport. The equal and opposite force does not necessarily travel back up your leg. The surface itself absorbs a portion of the force converting it to other forms of energy. Subsequently, tennis court surfaces are rated not only for pace but also for the percentage of force reduction.

Spatial Interpolation of Hourly Air Temperature over Sloping Surfaces Based on a Solar Irradiance Correction (일사 수광량 보정에 의한 산악지대 매시기온의 공간내삽)

  • 정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • Spatial interpolation has become a common procedure in converting temperature forecasts and observations at irregular points for use in regional scale ecosystem modeling and the model based decision support systems for resource management. Neglection of terrain effects in most spatial interpolations for short term temperatures may cause erroneous results in mountainous regions, where the observation network hardly covers full features of the complicated terrain. A spatial interpolation model for daytime hourly temperature was formulated based on error analysis of unsampled site with respect to the site topography. The model has a solar irradiance correction scheme in addition to the common backbone of the lapse rate - corrected inverse distance weighting. The solar irradiance scheme calculates the direct, diffuse and reflected components of shortwave radiation over any surfaces based on the sun-slope geometry and compares the sum with that over a reference surface. The deviation from the reference radiation is used to calculate the temperature correction term by an empirical conversion formula between the solar energy and the air temperature on any sloped surfaces at an hourly time scale, which can be prepared seasonally for each land cover type. When this model was applied to a 14 km by 22 km mountainous region at a 10 m horizontal resolution, the estimated hourly temperature surfaces showed a better agreement with the observed distribution than those by a conventional method.

The Effect of Substrate Temperature on the Electrical, Electronic, Optical Properties and the Local Structure of Transparent Nickel Oxide Thin Films

  • Lee, Kangil;Kim, Beomsik;Kim, Juhwan;Park, Soojeong;Lee, Sunyoung;Denny, Yus Rama;Kang, Hee Jae;Yang, Dong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.397-397
    • /
    • 2013
  • The electrical, electronic, optical properties and the local structure of Nickel Oxide (NiO) thin film have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), UV-spectrometer,Hall Effect measurement and X-ray absorption spectroscopy (XAS). The XPS results show that the Ni 2p spectra for all films consist of $Ni2p_{3/2}$ at around 854.5 eV which indicate the presence of Ni-O bond from NiO phase and for the annealed film at temperature above $200^{\circ}C$ shows the coexist Ni oxide and Ni metal phase. The REELS spectra showed that the band gaps of the NiO thin films were abruptly decreased with increasing temperature. The values of the band gaps are consistent with the optical band gaps estimated by UV-Spectrometer. The optical transmittance spectra shows that the transparency of NiO thin films in the visible light region was deteriorated with higher temperature due to existence of $Ni^0$. Hall Effect measurement suggest that the NiO thin films prepared at relatively low temperatures (RT and $100^{\circ}C$) are suitable for fabricating p-type semiconductor which showed that the best properties was achieved at $100^{\circ}C$, such as a low resistivity of $7.49{\Omega}.cm$. It can be concluded that the annealing process plays a crucial role in converting from p type to n type semiconductor which leads to reducing electrical resistivity of NiO thin films. Furthermore, the extended X-ray absorption fine structure (EXAFS) spectrum at the Ni K-edge was used to address the local structure of NiO thin films. It was found that the thermal treatments increase the order in the vicinity of Ni atom and lead the NiO thin films to bunsenite crystal structure. Moreover, EXAFS spectra show in increasing of coordination number for the first Ni-O shell and the bond distance of Ni-O with the increase of substrate temperature.

  • PDF

An Exploration on Food Waste Management of Local Governments (전국 지방자치단체의 음식물쓰레기 관리 분석)

  • Oh, Jeongik;Lee, Hyunjeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.101-109
    • /
    • 2016
  • This research is to explore food waste management across local governments. In particular, pubic administration on food waste, food waste management (from generation to disposal) and civil complaints in jurisdiction are examined. In doing so, a self-administered questionnaire survey was conducted among civil officers in charge of food waste management, and all the collected responses were statistically analyzed. The main results were as follows: public spending on food waste management was a little larger in metropolises than in provincial cities, and the largest food waste source was identified as households (in housing). While regular collection of food waste by trucks was the most common transport method adopted by local governments, resource recovery for compost/fertilizer production was widely used. Also, most of the respondents agreed that the current approach to food waste handling practices are necessarily replaced with more advanced technology converting waste into energy or fuel. Further, it's found that the civil complaints on food waste management were largely categorized into 3 groups - food waste handling, civil service and food waste retrieval. Therefore, the findings indicate that the development and application of no-food waste or waste-to-resource systems are effective in housing estates where large amount of food waste is generated and eliminated.