• Title/Summary/Keyword: Energy Consumption Prediction

Search Result 193, Processing Time 0.024 seconds

New Drowsy Cashing Method by Using Way-Line Prediction Unit for Low Power Cache (저전력 캐쉬를 위한 웨이-라인 예측 유닛을 이용한 새로운 드로시 캐싱 기법)

  • Lee, Jung-Hoon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.74-79
    • /
    • 2011
  • The goal of this research is to reduce dynamic and static power consumption for a low power cache system. The proposed cache can achieve a low power consumption by using a drowsy and a way prediction mechanism. For reducing the static power, the drowsy technique is used at 4-way set associative cache. And for reducing the dynamic energy, one among four ways is selectively accessed on the basis of information in the Way-Line Prediction Unit (WLPU). This prediction mechanism does not introduce any additional delay though prediction misses are occurred. The WLPU can effectively reduce the performance overhead of the conventional drowsy caching by waking only a drowsy cache line and one way in advance. Our results show that the proposed cache can reduce the power consumption by about 40% compared with the 4-way drowsy cache.

  • PDF

Prediction of Heating and Cooling Energy Consumption in Residential Sector Considering Climate Change and Socio-Economic (기후변화와 사회·경제적 요소를 고려한 가정 부문 냉난방 에너지 사용량 변화 예측)

  • Lee, Mi-Jin;Lee, Dong-Kun;Park, Chan;Park, Jin-Han;Jung, Tae-Yong;Kim, Sang-Kyun;Hong, Sung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.487-498
    • /
    • 2015
  • The energy problem has occurred because of the effects of rising temperature and growing population and GDP. Prediction for the energy demand is required to respond these problems. Therefore, this study will predict heating and cooling energy consumption in residential sector to be helpful in energy demand management, particularly heating and cooling energy demand management. The AIM/end-use model was used to estimate energy consumption, and service demand was needed in the AIM/end-use model. Service demand was estimated on the basis of formula, and energy consumption was estimated using the AIM/end-use model. As a result, heating and cooling service demand tended to increase in 2050. But in energy consumption, heating decreased and cooling increased.

Routing Protocol for Hybrid Ad Hoc Network using Energy Prediction Model (하이브리드 애드 혹 네트워크에서의 에너지 예측모델을 이용한 라우팅 알고리즘)

  • Kim, Tae-Kyung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.165-173
    • /
    • 2008
  • Hybrid ad hoc networks are integrated networks referred to Home Networks, Telematics and Sensor networks can offer various services. Specially, in ad hoc network where each node is responsible for forwarding neighbor nodes' data packets, it should net only reduce the overall energy consumption but also balance individual battery power. Unbalanced energy usage will result in earlier node failure in overloaded nodes. it leads to network partitioning and reduces network lifetime. Therefore, this paper studied the routing protocol considering efficiency of energy. The suggested algorithm can predict the status of energy in each node using the energy prediction model. This can reduce the overload of establishing route path and balance individual battery power. The suggested algorithm can reduce power consumption as well as increase network lifetime.

  • PDF

Efficient Grid-Independent ESS Control System by Prediction of Energy Production Consumption (에너지 생산량 소비량 예측을 통한 효율적인 계통 독립형 ESS 제어 시스템)

  • Joo, Jong-Yul;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.155-160
    • /
    • 2019
  • In this paper, we propose an efficient grid-independent ESS control system through the control of renewable energy and agricultural ICT by utilizing the prediction of energy production and consumption. The proposed system is an integrated management system that can perform maintenance and monitoring by visualizing the accurate phase and data of power system. It can automatically cope, collect, process, and control the data. Also, it can analyze the power generation of solar power generation, consumption pattern of installed facilities, and operation trend of facilities. Further, it can predict the consumption of energy production and present the optimal energy management method by using the OpenAPI of the Korea Meteorological Administration, thereby reducing unnecessary energy consumption and operating cost.

System dynamic modeling and scenario simulation on Beijing industrial carbon emissions

  • Wen, Lei;Bai, Lu;Zhang, Ernv
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.355-364
    • /
    • 2016
  • Beijing, as a cradle of modern industry and the third largest metropolitan area in China, faces more responsibilities to adjust industrial structure and mitigate carbon emissions. The purpose of this study is aimed at predicting and comparing industrial carbon emissions of Beijing in ten scenarios under different policy focus, and then providing emission-cutting recommendations. In views of various scenarios issues, system dynamics has been applied to predict and simulate. To begin with, the model has been established following the step of causal loop diagram and stock flow diagram. This paper decomposes scenarios factors into energy structure, high energy consumption enterprises and growth rate of industrial output. The prediction and scenario simulation results shows that energy structure, carbon intensity and heavy energy consumption enterprises are key factors, and multiple factors has more significant impact on industrial carbon emissions. Hence, some recommendations about low-carbon mode of Beijing industrial carbon emission have been proposed according to simulation results.

Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions

  • Hyebin Park;Seung Hyun Yoon
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.379-391
    • /
    • 2024
  • To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.

Prediction of Energy Consumption in a Smart Home Using Coherent Weighted K-Means Clustering ARIMA Model

  • Magdalene, J. Jasmine Christina;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.177-182
    • /
    • 2022
  • Technology is progressing with every passing day and the enormous usage of electricity is becoming a necessity. One of the techniques to enjoy the assistances in a smart home is the efficiency to manage the electric energy. When electric energy is managed in an appropriate way, it drastically saves sufficient power even to be spent during hard time as when hit by natural calamities. To accomplish this, prediction of energy consumption plays a very important role. This proposed prediction model Coherent Weighted K-Means Clustering ARIMA (CWKMCA) enhances the weighted k-means clustering technique by adding weights to the cluster points. Forecasting is done using the ARIMA model based on the centroid of the clusters produced. The dataset for this proposed work is taken from the Pecan Project in Texas, USA. The level of accuracy of this model is compared with the traditional ARIMA model and the Weighted K-Means Clustering ARIMA Model. When predicting,errors such as RMSE, MAPE, AIC and AICC are analysed, the results of this suggested work reveal lower values than the ARIMA and Weighted K-Means Clustering ARIMA models. This model also has a greater loglikelihood, demonstrating that this model outperforms the ARIMA model for time series forecasting.

A METHOD FOR PREDICTING THE ENERGY CONSUMPTION OF A BUILDING IN EARLY STAGE OF DESIGN

  • Ji-Yeon Seo;Su-Kyung Cho;Yeon-Woong Jung;Hyung-Jin Kim;Jae Ho, Cho;Jae-Youl Chun
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.304-307
    • /
    • 2013
  • Various programs have been developed to predict the energy consumption of a building as a result of recent increased social interest in the environmental friendliness of construction as measured by energy efficiency. The goal of environmental-friendliness, which is achieved by predicting the energy consumption of a building, can be realized in the design stage by applying a variety of technologies, planning factors and planning systems. However, most energy analyzing engines are only suitable for use in the advanced stages of design because of the large amount of design information that must be entered. Thus, because the simulation programs currently used are not suitable for use in the early stages of design, this study suggests a prediction logic that provides an overview of the energy consumption of a building according to its size, scope, and purpose by analyzing statistics collected by government agencies.

  • PDF

Development of the Fire Prevention Method related to Gas in the Area of Dense Energy Consumption (에너지 사용 밀집지역에서의 가스 관련 화재예방 기법 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2018
  • Accident likelihood is growing due to a correlation for gas and electricity installed in the area of dense energy consumption like traditional market and underground shopping center. In order to prevent and respond accident risks related to gas and electricity in this area, it should be monitored and predicted for factors of gas leak or electricity by developing safety management system. This study is about accident prediction model development considering fire risk factor related to gas accident. The temperature variation characteristic near a gas burner was analyzed. Also, accident prediction algorithm and related module were developed to prevent fire in the area of dense energy consumption.