• Title/Summary/Keyword: Energy Consumption Minimization

Search Result 68, Processing Time 0.022 seconds

Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge Computing Systems

  • Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5614-5633
    • /
    • 2018
  • Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.

Voltage Selection Methodology for DVFS Overhead Minimization (동적 전압 주파수 스케일링 오버헤드 최소화를 위한 전압 선택 방법론)

  • Chang, Jin Kyu;Han, Tae Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.854-857
    • /
    • 2015
  • As the number of devices integrated on system-on-chip(SoC) increases exponentially, energy reduction technology is essential. Dynamic Voltage and Frequency Scaling (DVFS) is a very effective technique for reducing power consumption. Since it requires complex voltage regulators and PLL circuits, DVFS tends to have significant overheads. In this paper, we propose a new voltage selection algorithm to minimize transition overhead for multiprocessor SoC (MPSoC). Simulation results show that proposed algorithm appears less energy consumption with transition overhead even though maintains performance.

  • PDF

Efficient CPU Resource Utilization Mechanism on Android Platforms for Conserving Energy (안드로이드 환경에서의 에너지 절약을 위한 효율적인 CPU 자원 활용 기법)

  • Ryu, Jun-han;Kwon, Young-ho;Rhee, Byung-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.526-529
    • /
    • 2015
  • as the smartphone industry developed, the smartphone's internal hardware devices have become high-end devices and it requires more power consumption than the previous one. therefore a battery of high capacity needed, but there is a limit in order to equip a large battery on account of smartphone minimization. The Linux Kernel provides the DVFS Mechanism to compensate for these limitations by software techniques. DVFS is dynamically adjust the frequency of the CPU to reduce the power consumption of the CPU. ondemand governor, the default policy in DVFS, apply the maximum frequency of the CPU whenever exceeding the up_threshold. so it result in a waste of CPU resources. by paying attention to this point, this paper propose the mechanism that maintain a high CPU utilization in proportion to the current frequency of the cpu to prevent the waste of CPU resources and conserve energy.

  • PDF

Energy-efficient Buffer-aided Optimal Relay Selection Scheme with Power Adaptation and Inter-relay Interference Cancellation

  • Xu, Xiaorong;Li, Liang;Yao, Yingbiao;Jiang, Xianyang;Hu, Sanqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5343-5364
    • /
    • 2016
  • Considering the tradeoff between energy consumption and outage behavior in buffer-aided relay selection, a novel energy-efficient buffer-aided optimal relay selection scheme with power adaptation and Inter-Relay Interference (IRI) cancellation is proposed. In the proposed scheme, energy consumption minimization is the objective with the consideration of relay buffer state, outage probability and relay power control, in order to eliminate IRI. The proposed scheme selects a pair of optimal relays from multiple candidate relays, denoted as optimal receive relay and optimal transmit relay respectively. Source-relay and relay-destination communications can be performed within a time-slot, which performs as Full-Duplex (FD) relaying. Markov chain model is applied to analyze the evolution of relay buffer states. System steady state outage probability and achievable diversity order are derived respectively. In addition, packet transmission delay and power reduction performance are investigated with a specific analysis. Numerical results show that the proposed scheme outperforms other relay selection schemes in terms of outage behavior with power adaptation and IRI cancellation in the same relay number and buffer size scenario. Compared with Buffer State relay selection method, the proposed scheme reduces transmission delay significantly with the same amount of relays. Average transmit power reduction can be implemented to relays with the increasing of relay number and buffer size, which realizes the tradeoff between energy-efficiency, outage behavior and delay performance in green cooperative communications.

Systematic Network Coding for Computational Efficiency and Energy Efficiency in Wireless Body Area Networks (무선 인체 네트워크에서의 계산 효율과 에너지 효율 향상을 위한 시스테매틱 네트워크 코딩)

  • Kim, Dae-Hyeok;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.823-829
    • /
    • 2011
  • Recently, wireless body area network (WBAN) has received much attention as an application for the ubiquitous healthcare system. In WBAN, each sensor nodes and a personal base station such as PDA have an energy constraint and computation overhead should be minimized due to node's limited computing power and memory constraint. The reliable data transmission also must be guaranteed because it handles vital signals. In this paper, we propose a systematic network coding scheme for WBAN to reduce the network coding overhead as well as total energy consumption for completion the transmission. We model the proposed scheme using Markov chain. To minimize the total energy consumption for completing the data transmission, we made the problem as a minimization problem and find an optimal solution. Our simulation result shows that large amount of energy reduction is achieved by proposed systematic network coding. Also, the proposed scheme reduces the computational overhead of network coding imposed on each node by simplify the decoding process.

Prediction of Consumed Electric Power on a MQL Milling Process using a Kriging Meta-Model (크리깅 메타모델을 이용한 MQL 밀링공정의 소비전력 예측 연구)

  • Jang, Duk-Yong;Jung, Jeehyun;Seok, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2015
  • Energy consumption reduction has become an important key word in manufacturing that can be achieved through the efficient and optimal use of raw materials and natural resources, and minimization of the harmful effects on nature or human society. The successful implementation of this concept can only be possible by considering a product's entire life cycle and even its disposal from the early design stage. To accomplish this idea with milling, minimum quantity lubrication (MQL) strategies and cutting conditions are analyzed through process modeling and experiments. In this study, a model to predict the cutting energy in the milling process is used to find the cutting conditions, which minimize the cutting energy through a Kriging meta-modeling process. The MQL scheme is developed first to reduce the amount of cutting oil and costs used in the cutting process, which is then employed for the entire modeling and experiments.

An Energy-Efficient Deployment Strategy for Micro Base Station in Wireless Cellular Systems (무선 셀룰라 시스템에서 에너지 효율적인 마이크로 기지국 배치 방안)

  • Oh, Eunsung
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.316-321
    • /
    • 2012
  • In this paper, we study the energy-efficient deployment strategy for micro base station (BS) in wireless cellular systems. Firstly, we formulate a general problem pertaining to total energy consumption minimization with the requirement of area spectral efficiency (ASE). We start from an observation about the correlation between the area covered by an additional micro BS and the increment of ASE. Under such an observation, we propose an efficient greedy micro BS deployment algorithm. Simulations show that the proposed deployment algorithm can deploy micro BSs with a slight performance reduction comparing with the optimal solution.

A High Quality Battery Charge-Discharge Controller for New & Renewal Energy Power Generation System (Focusing on Sun-tracking Solar Power Generation System) (신재생에너지 발전 시스템을 위한 고 품위 축전지 충방전 컨트롤러 (추적식 태양광 발전시스템을 중심으로))

  • Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.258-263
    • /
    • 2011
  • In this paper, a high quality battery charge-discharge controller for new & renewal energy power generation system is designed. The proposed new controller has a function to manipulate the battery charging current precisely and it is suitable for various batteries including Lead-Acid battery generally used for solar power generation system. LCD display function is implemented to enhanced the user's convenience and minimization of standby power consumption is realized by optimal design using CAD tools.

Optimal Water-cooling Tube Design for both Defect Free Process Operation and Energy Minimization in Czochralski Process (무결정결함영역을 유지하면서 에너지를 절감하는 초크랄스키 실리콘 단결정 성장로 수냉관 최적 설계)

  • Chae, Kang Ho;Cho, Na Yeong;Cho, Min Je;Jung, Hyeon Jun;Jung, Jae Hak;Sung, Su Whan;Yook, Young Jin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.49-55
    • /
    • 2018
  • Recently solar cell industry needs the optimal design of Czochralski process for low cost high quality silicon mono crystalline ingot. Because market needs both high efficient solar cell and similar cost with multi-crystalline Si ingot. For cost reduction in Czochralski process, first of all energy reduction should be completed because Czochralski process is high energy consumption process. For this purpose we studied optimal water-cooling tube design and simultaneously we also check the quality of ingot with Von mises stress and V(pull speed of ingot)/G(temperature gradient to the crystallization) values. At this research we used $CG-Sim^{(R)}$ S/W package and finally we got improved water-cooling tube design than normally used process in present industry. The optimal water-cooling tube length should be 200mm. The result will be adopted at real industry.

Power Saving Scheme by Distinguishing Traffic Patterns for Event-Driven IoT Applications

  • Luan, Shenji;Bao, Jianrong;Liu, Chao;Li, Jie;Zhu, Deqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1123-1140
    • /
    • 2019
  • Many Internet of Things (IoT) applications involving bursty traffic have emerged recently with event detection. A power management scheme qualified for uplink bursty traffic (PM-UBT) is proposed by distinguishing between bursty and general uplink traffic patterns in the IEEE 802.11 standard to balance energy consumption and uplink latency, especially for stations with limited power and constrained buffer size. The proposed PM-UBT allows a station to transmit an uplink bursty frame immediately regardless of the state. Only when the sleep timer expires can the station send uplink general traffic and receive all downlink frames from the access point. The optimization problem (OP) for PM-UBT is power consumption minimization under a constrained buffer size at the station. This OP can be solved effectively by the bisection method, which demonstrates a performance similar to that of exhaustive search but with less computational complexity. Simulation results show that when the frame arrival rate in a station is between 5 and 100 frame/second, PM-UBT can save approximately 5 mW to 30 mW of power compared with an existing power management scheme. Therefore, the proposed power management strategy can be used efficiently for delay-intolerant uplink traffic in event-driven IoT applications, such as health status monitoring and environmental surveillance.