• 제목/요약/키워드: Energetic method

검색결과 124건 처리시간 0.024초

Optical and Thermodynamic Modeling of the Interaction Between Long-range High-power Laser and Energetic Materials

  • Kisung Park;Soonhwi Hwang;Hwanseok Yang;Chul Hyun;Jai-ick Yoh
    • Current Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.138-150
    • /
    • 2024
  • This study is essential for advancing our knowledge about the interaction between long-range high-power lasers and energetic materials, with a particular emphasis on understanding the response of a 155-mm shell under various surface irradiations, taking into account external factors such as atmospheric disturbances. The analysis addresses known limitations in understanding the use of non-realistic targets and the negligence of ambient conditions. The model employs the three-dimensional level-set method, computer-aided design (CAD)-based target design, and a message-passing interface (MPI) parallelization scheme that enables rapid calculations of the complex chemical reactions of the irradiated high explosives. Important outcomes from interaction modeling include the accurate prediction of the initiation time of ignition, transient pressure, and temperature responses with the location of the initial hot spot within the shell, and the relative magnitude of noise with and without the presence of physical ambient disturbances. The initiation time of combustion was increased by approximately a factor of two with atmospheric disturbance considered, while slower heating of the target resulted in an average temperature rise of approximately 650 K and average pressure increase of approximately 1 GPa compared to the no ambient disturbance condition. The results provide an understanding of the interaction between the high-power laser and energetic target at a long distance in an atmospheric condition.

고에너지 물질 연소를 기반으로 한 Multi Physics Modeling (How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference)

  • 김기홍;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.238-241
    • /
    • 2007
  • We present an innovative method of multi-physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, hish temperature, strong non-linear shock waves, and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that makes it suitable for high strain-rate multi-material interaction problems. Furthermore we eliminate the possible interface smearing by using the level sets. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress applications of our algorithm including the Taylor impact test, explosive venting and additional confined explosion problems of modem interest.

  • PDF

Innovative Modeling and Simulation of Reacting Flow with Complex Confined Boundaries

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.311-319
    • /
    • 2008
  • We present an innovative method of multi physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, high temperature, strong shock waves and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that make it suitable for high strain rate multi-material interacting problems. Furthermore we eliminate the possible interface smearing by using the level sets. We heave devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress application of our integrated framework.

  • PDF

Aluminum-Copper(II) Oxide Composite의 정전기에 의한 반응 특성 연구 (Reaction Characteristics Study of Aluminum-Copper(II) Oxide Composites Initiated by the Electrostatic Discharge)

  • 김민준;김성호;김자영;임예슬
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.591-598
    • /
    • 2018
  • The reaction characteristics of aluminum-copper(II) oxide composites initiated by the electrostatic discharge were studied as changing the aluminum particle size. Three different sizes of aluminum particles with nano-size copper(II)-oxide particle were used in the study. These composites were manufactured by two methods i.e. a shock-gel method and a self-assembly method. The larger aluminum particle size was, the less sensitive and less violent these composites were based on the electrostatic test. On the analysis of high speed camera about ignition appearances and burning time, the burning speed was faster when aluminum particle size was smaller.

충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용 (Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application)

  • 김기홍;여재익
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.571-579
    • /
    • 2009
  • 에너지 물질과 같이 연소 반응을 하는 압축성 물질을 해석하기 위하여 Hydro-SCCM (Shock Compression of Condensed Matter)이라는 에너지 물질과 비반응 물질을 포함한다중 물질 해석툴을 개발하였다. 고에너지 물질은 강한 충격파와 고온과 고압을 가진 물질경계면에서 높은 변형률을 발생시킨다. 이러한 큰 구배를 가진 현상을 해석하기 위하여 새로운 오일러리안 기법을 사용하였다. 본 논문에서는 현상을 해석하기 위한 수학적 방법과 해석결과를 소개하였다.

Construction of the shape functions of beam vibrations for analysis of the rectangular plates by Kantorovich-Vlasov's method

  • Olodo, Emmanuel E.T.;Degan, Gerard
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.595-601
    • /
    • 2014
  • For analysis of the plates and membranes by numerical or analytical methods, the question of choice of the system of functions satisfying the different boundary conditions remains a major challenge to address. It is to this issue that is dedicated this work based on an approach of choice of combinations of trigonometric functions, which are shape functions of a bended beam with the boundary conditions corresponding to the plate support mode. To do this, the shape functions of beam vibrations for strength analysis of the rectangular plates by Kantorovich-Vlasov's method is considered. Using the properties of quasi-orthogonality of those functions allowed assessing to differential equation for every member of the series. Therefore it's proposed some new forms of integration of the beam functions, in order to simplify the problem.

양방향 펄스전원을 이용한 NO 가스의 방전처리 (Discharge Processes of NO Gas Using Bidirectional Pulsed Voltage)

  • 주홍진;박정호;심재학;고광철;강형부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1682-1684
    • /
    • 2001
  • In removing the flue-gas using electrical discharge method, it is important to dissociate or ionize the atoms and molecules by the collisions with energetic electrons and it produces the radicals that are used to decompose the pollutants. For that purpose, a bidirectional pulsed voltage is used to produce lots of energetic electrons efficiently and increase the power efficiency. The simulation is performed with changing the pulsewidth under the fixed applied voltage. The particle-mesh model coupling the NGP(nearest-grid-point) to FEM(finite element method) is used to simulate the behavior of electrons and the spatio-temporal variation of the electric field for the streamer in discharge tube.

  • PDF

PMD용 금속화약(ZPP) 제조 및 특성분석 (The Characteristics Analysis and Manufacture of Metal Explosive(ZPP) on PMD)

  • 심정섭;김상백;안길환;김준형
    • 한국추진공학회지
    • /
    • 제20권3호
    • /
    • pp.25-31
    • /
    • 2016
  • 본 연구에서는 항공우주, 유도탄, 자동화 산업에 널리 적용되는 금속복합화약 ZPP(Zirconium Potassium Perchlorate)의 제조공정 과 특성평가를 고찰하였다. 기본적으로 PMD에 사용되는 고체 점화제는 금속연료와 산화제 그리고 유기 고분자물질(결합재)로 구성되며, 이들 원료들을 균질하게 혼합하기 위하여 precipitation process를 사용하였다. 원료 물질의 특성 및 열적 반응 해석을 통한 최적 조성비를 설계하였으며, 이들의 입도, 형상, 열량 분석 등의 특성 평가를 수행하여 결과를 비교하였다.

니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성 (Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications)

  • 김동원;권구현;김경태
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

실내 3D 입체 면광원 조명연출에 관한 감성평가 모형 연구 (Sensibility Evaluation Model Research as to The Three-dimensional Surface Light Source set In The Interior)

  • 이진숙;박지영;정찬웅
    • 조명전기설비학회논문지
    • /
    • 제29권6호
    • /
    • pp.14-26
    • /
    • 2015
  • This study has been conducted so as to analyse user's sensibility on lighting method, correlated color temperature and illumination by composing surface light source, which was projected onto a unit side of interior wall, ceiling and floor. 1) As an analyzed results of the sensibility images, it showed that the "snug & tender" value had got higher when the correlated color temperature got lower. And the "energetic, cheerful" value had got higher when the level of illuminance got lower. Furthermore, the "unusual, unique" showed higher value on the illuminated floor circumstance. Finally, the higher correlated color temperature had been, "energetic, cheerful" value also got higher. 2) As a result of multi-regression analysis, it was found that 3000K and 100lx had the biggest influence on 'snug' image while 5,500K, 500lx had the biggest influence on 'energetic' image. In addition, it was found that the illuminated floor had a big influence on 'unusual' image while 500lx had the biggest influence on 'refined' image.