• Title/Summary/Keyword: Endothelium-dependent relaxation

Search Result 138, Processing Time 0.022 seconds

Pharmacological Actions of New Wonbang Woohwangchungsimwon Pill on Cardiovascular System (신원방우황청심원의 심혈관계에 관한 약효)

  • 조태순;이선미;김낙두;허인회;안형수;권광일;박석기;김상호;신대희
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.237-250
    • /
    • 1999
  • In order to investigate the pharmacologic properties of New Wonbang Woohwangchungsimwon Pill(NSCH), effects of Wonbang Woohwangchungsimwon Pill (SCH) and NSCH were compared using various experimental models. In rat aorta, NSCH and SCH made the relaxation of blood vessels in maximum contractile response to phenylephrine (10-6 M) regardless to endothelium containing or denuded rings of the rat aorta. Furthermore, the presence of the inhibitors of NO synthase and guanylate cyclase did not affect significantly the relaxing effects of NSCH and SCH. NSCH and SCH inhibited the vascular contractions induced by acetylcholine, prostaglandin endoperoxide or peroxide in a dose-dependent manner. In conscious spontaneously hypertensive rats (SHRs), NSCH and SCH decreased significantly heart rate. These, at high doses, had a negative inotropic effects that was a decrease of left ventricular developed pressure and (-dp/dt)/(+dp/dt) in the isolated perfused rat hearts, and also decreased the contractile force and heart rate in the isolated rat right atria. In guinea-pig papillary muscle, these had no effects on parameters of action potential such as action potential amplitude (APA), $V_{max}$ and resting membrane potential (RMP) at low doses, whereas inhibitory the cardiac contractility at high doses. Furthermore, these had a significant inhibitory effects on palpitation of the heart in normotensive rats and SHRs. These had a significant inhibitory effects on palpitation of the heart in normotensive rats and SHRs. These results suggest that NSCH and SCH have weak cardiovascular effects, and that there is no significant differences between cardiovascular effects of two preparations.

  • PDF

Beneficial effects of Paeo-tang on cardiovascular and renal function in L-NAME-induced hypertensive rats (파어탕의 L-NAME 유도 고혈압 동물군에서의 혈압강하효과 및 심신기능 개선 효과)

  • Na, Se Won;Hong, Mi Hyeon;Kim, Hye Yoom;Jang, Youn Jae;Yoon, Jung Joo;Lee, Yun Jung;Kang, Dae Gill;Lee, Ho Sub
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.271-280
    • /
    • 2020
  • Hypertension has been approved to cause disharmony between the heart and kidney such as cardiac hypertrophy and kidney dysfunction. In traditional oriental medicine Paeo-tang (PET) has been shown to have effects on blood circulation improvement. However, the beneficial effect of PET on hypertension remains unknown. In this study, we investigated that PET attenuates blood pressure and improves cardiovascular and renal function in NG-nitro-L-arginine methylester (L-NAME) rat model. Hypertensive rat models were induced by the administration of L-NAME (40 mg/kg/day) and then PET (50 or 100 mg/kg/day) or Olmetec was treated for 2 weeks. PET treatment significantly suppressed the systolic blood pressure and decreased intima-media thickness in the thoracic aorta. PET ameliorated endothelium-dependent and independent vascular relaxation in the L-NAME-induced vascular dysfunction. PET ameliorated the functional decline in the kidney such as albumin and blood urea nitrogen in plasma. These results demonstrated that PET possesses protective effects against L-NAME-induced hypertension.

Inhibitory Effect of Enalapril in Combination with Ginkgo biloba Extract (EGb 761) on the Monocrotaline-induced Pulmonary Hypertension Rats (Monocrotaline에 의해 유발된 폐고혈압 흰쥐에 있어 Enalapril 및 Ginkgo biloba Extract(EGb 761)의 병용 투여시 억제효과)

  • 이영미;안형수;임세진;안령미
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.487-493
    • /
    • 1999
  • Effects of Ginkgo biloba extract (EGb 761) on the anti-pulmonary hypertensive action of enalapril were evaluated in rats. Pulmonary hypertension was induced by monocrotaline treatment (60mg/kg, i.p.) in normotensive rats. In the systolic pulmonary artery pressure, the control group was 33$\pm$2 mmHg, comparing to the normal group of 19$\pm$1 mmHg. That of enalapril group(20mg/kg/day, p.o.) was 26$\pm$2 mmHg. In the isolated lung preparation, acetylcholine, which was endothelium dependent vasodilator, induced the decrease of pulmonary artery perfusion pressure(-2.0$\pm$0.7 mmHg) in normal group, but the increase of that of 3.4$\pm$0.6 and 3.0$\pm$0.9 mmHg in control and enalapril group, respectively. And that of the combined group was -0.5$\pm$0.2 mmHg. In the isolated pulmonary artery, acetylcholine(10-5M) induced the relaxation of 65$\pm$6% in normal group, but 15 and 8% in control and enalapril group, respectively. And that of the combined group was resulted 55$\pm$2%. These results suggested that co-administration of Ginkgo biloba extract(EGb 761) potentiated the anti-pulmonary hypertensive effects of enalapril through the increase of pulmonary vasodilation due to the protection of endothelial cell by antioxidant action of Ginkgo biloba extract (EGb 761).

  • PDF

Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta

  • Xu, Qian;Zhuo, Kunping;Zhang, Xiaotian;Zhang, Yaoxia;Xue, Jiaojiao;Zhou, Ming-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.255-262
    • /
    • 2022
  • Oxytocin is a neuropeptide produced primarily in the hypothalamus and plays an important role in the regulation of mammalian birth and lactation. It has been shown that oxytocin has important cardiovascular protective effects. Here we investigated the effects of oxytocin on vascular reactivity and underlying the mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and in rat aorta ex vivo. Oxytocin increased phospho-eNOS (Ser 1177) and phospho-Akt (Ser 473) expression in HUVECs in vitro and the aorta of rat ex vivo. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited oxytocin-induced Akt and eNOS phosphorylation. In the rat aortic rings, oxytocin induced a biphasic vascular reactivity: oxytocin at low dose (10-9-10-8 M) initiated a vasorelaxation followed by a vasoconstriction at high dose (10-7 M). L-NAME (a nitric oxide synthase inhibitor), endothelium removal or wortmannin abolished oxytocin-induced vasorelaxation, and slightly enhanced oxytocin-induced vasoconstriction. Atosiban, an oxytocin/vasopressin 1a receptor inhibitor, totally blocked oxytocin-induced relaxation and vasoconstriction. PD98059 (ERK1/2 inhibitor) partially inhibited oxytocin-induced vasoconstriction. Oxytocin also increased aortic phospho-ERK1/2 expression, which was reduced by either atosiban or PD98059, suggesting that oxytocin-induced vasoconstriction was partially mediated by oxytocin/V1aR activation of ERK1/2. The present study demonstrates that oxytocin can activate different signaling pathways to cause vasorelaxation or vasoconstriction. Oxytocin stimulation of PI3K/eNOS-derived nitric oxide may participate in maintenance of cardiovascular homeostasis, and different vascular reactivities to low or high dose of oxytocin suggest that oxytocin may have different regulatory effects on vascular tone under physiological or pathophysiological conditions.

Changes in the Endothelin-1-induced Contraction of Aorta in Streptozotocin-induced Diabetic Rats

  • Cheong, Hyun-Joo;Kim, Eun-Jin;Kim, Su-Jin;Lee, Sun-Hee;Rhim, Byung-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.185-195
    • /
    • 2000
  • Vascular diseases are significant complications of diabetes mellitus (DM), and the endothelial cells may play a pivotal role in the development of vascular disease in DM. Endothelin-1 (ET-1) released from endothelium is a potent vasoconstrictor peptide and circulating level of ET-1 is increased in a variety of disease states. The purpose of this study was to determine the changes of responsiveness to ET-1 in DM, and we experimented on the changes in the ET-1-induced contraction, levels of nitrite and lipid peroxidation, and ET-1 immunoreactivity in aorta from streptozotocin-induced DM rats. DM was induced by single injection of streptozotocin (55 mg/kg, i.p.). The immunoreactive ET-1 levels in endothelial layer of thoracic aorta were much higher in DM rats than control rats. Nitrite in tissue homogenate was decreased and plasma nitrite was increased in DM rats. Malondialdehyde (MDA) was significantly increased in DM rats and cGMP was not significantly different between control and DM rats. ET-1 produced concentration- dependent contractile responses that are significantly attenuated in DM rats compared to controls. In the presence of selective $ET_A$ receptor antagonist BQ610, the maximum contraction was decreased and the concentration ratios for BQ610 yielded $pA_2$ values of 7.3 (slope, 0.65) in control rats, whereas BQ610 had no antagonistic effect on ET-1-induced contraction in DM rats. However, pretreatment with BQ788, an $ET_B$ receptor antagonist, maximum response was decreased and the dose-response curves for ET-1 were shifted to the right in both groups and $pA_2$ values were 7.9 and 7.7 (slope, 1.05 in control and DM rats), respectively. IRL 1620 and sarafotoxin S6c, $ET_B$ agonists, induced relaxation in control rats but not in DM rats. These results indicate that endothelial cell dysfunction and enhanced immunoreactivity of ET-1 have been found in DM rat and ET-1-induced contraction was attenuated in DM rat. These attenuated responses might be at least in part caused by the alteration of $ET_A$ receptor properties (e.g. desensitization), and partly related with an alteration in intracellular mechanism for contraction to ET-1.

  • PDF

Effect of Guinea Pig Tracheal Epithelium on the Contraction of Rat Vascular Smooth Muscle (기니피그 기도상피세포가 백서의 혈관 평활근 수축에 미치는 영향)

  • Kwon, O-Jung;Yoo, Chul-Gyu;Cho, Sang-Heon;Park, In-Won;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keon-Youl;Han, Yong-Chol;Seoh, Seok-Hyo;Kim, Ki-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.3
    • /
    • pp.270-279
    • /
    • 1991
  • It has been well known that the integrity of airway epithelium is important in developing of bronchial hyperreactivity or bronchial asthma. But the mechanisms underlying this nonspecific airway hyperresponsiveness are not yet determined. To evaluate the ability of guinea pig trachea to release an epithelium derived relaxing factor (EpDRF) which relax rat vascular smooth muscle, we performed the coaxial bioassay using guinea pig trachea and rat aorta. And to evaluate the nature of EpDRF we investigate the influence of methylene blue and indomethacin on the coaxial bioassay. Results were as follows. 1) Vascular smooth muscle mounted into the epithelium intact trachea which was precontracted with phenylephrine was relaxed by addition of histamine or acetylcholine. But vascular smooth muscle mounted into epithelium denuded trachea failed to be relaxed. 2) Epithelium dependent relaxation of vascular smooth muscle was not affected by pretreatment of methylene blue or indomethacin. These results strongly suggests that guinea pig tracheal epithelium releases EpDRF which is able to relax rat vascular smooth muscle. And EpDRF released by airway epithelium is not related to endothelium derived relaxing factor (EDRF) or cyclooxygenase products.

  • PDF

Effects of the Water Extracts of Mantidis Ootheca, Rosa Laevigata, and Imperata Cylindrica on Blood Pressure in Renovascular Hypertension Induced by 2K1C (상표초, 백모근, 금앵자 추출물이 2K1C 고혈압 백서의 혈압에 미치는 영향)

  • Kim, Hye Yoom;Ahn, You Mee;Kho, Min Chul;Park, Ji Hun;Lee, Jae Yun;Lee, Soo Ho;Park, Sueng Hyuk;Kim, Byung Sook;Kang, Dae Gill;Lee, Yun Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • The aim of the present study is to investigate the hypotensive effect of Mantidis ootheca (WMO), Rosa laevigata (WIC), and Imperata cylindrica (WRL) in renovascular hypertension rats. Experimental hypertension model is 2-kidney and 1-clip (2K1C) induced rats. 2K1C rats were treated with WMO, WIC, and WRL at dose of 100 mg/kg/day orally for 3 weeks, respectively. Treatment groups with WMO, WIC, and WRL significantly lowered blood pressure. Interestingly, WMO, WIC, and WRL ameliorated endothelium-dependent and independent vascular relaxation in the phenylephrine-precontracted thoracic aorta in hypertension models. In addition, 2K1C-induced hypertension model increased plasma renin activity, however, WMO, WIC, and WRL attenuated those activities. These results suggest that WMO, WIC, and WRL ameliorates vascular dysfunction in 2K1C-induced hypertension models via the regulation of nitric oxide and renin-angiotensin-aldosterone system.

Pharmacological Actions of New Woohwangchungsimwon Pill on Cardiovascular System (신우황청심원의 심혈관계에 대한 약효)

  • Cho, Tai-Soon;Lee, Sun-Mee;Kim, Nak-Doo;Huh, In-Hoi;Ann, Hyung-Soo;Kwon, Kwang-Il;Park, Seok-Ki;Shim, Sang-Ho;Shin, Dae-Hee;Park, Dai-Kyu
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.802-816
    • /
    • 1997
  • In order to investigate the pharmacological properties of New Woohwangehungsimwon Pill (NWCH). Effects of Woohwangehungsimwon Pill (WCH) and NWCH were compared using various experimental models. In isolated rat aorta, NWCH and WCH showed the relaxation of blood vessels in maximum contractile response to phenylephrine ($10^{-6}$M) without regard to endothelium containing or denuded rings of the rat aorta. Furthermore, the presence of the inhibitors of NO synthase and guanylate cyclase did not affect significantly the relaxative effects of NWCH and WCH. NWCH and WCH inhibited the vascular contractions induced by acethylcholine, prostaglandin endoperoxide or peroxide in a dose-dependent manner. In conscious spontaneously hypertensive rats(SHRs), NWCH and WCH decreased significantly heart rate. These, at high doses, had a negative inotropic effect that was a decrease of LVDP and (-dp/dt)/(+dp/dt) in the isolated perfused rat hearts, and also decreased the contractile force and heart rate in the isolated rat right atria. In excised guinea-pig papillary muscle, these had no effects on parameters of action potential at low doses, whereas inhibited the cardiac, contractility at high doses. Furthermore, these had a significant inhibitory effects on heart acceleration in normotensive rats and SHRs. These results suggested that NWCH and WCH have weak cardiovascular effects, and that there is no significant differences between two preparations.

  • PDF