• 제목/요약/키워드: Endothelium dependent relaxation

검색결과 138건 처리시간 0.024초

Endothelium-dependent Contraction of Aorta in One-kidney, One-clip Goldblatt Hypertensive Rat

  • Jeon, Byeong-Hwa;Lee, Kug-Hee;Kim, Hoe-Suk;Kim, Se-Hoon;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.269-278
    • /
    • 1996
  • The mechanism of impaired endothelium-dependent relaxation in the aorta of one-kidney, one clip Goldblatt hypertensive (1K,1C-GBH) rats was investigated. 8 week-old Wistar-Kyoto (WKY) rats were made hypertensive by left renal artery stenosis with contralateral nephrectomy. Endothelium-dependent relaxation was significantly reduced in 1K,1C-GBH rats as compared with WKY rats. However, the relaxation by sodium nitroprusside in 1K,1C-GBH rats was not reduced as compared with WKY rats. The impairment of endothelium-dependent relaxation in 1K,1C-GBH rats was partially restored by the pretreatment of indomethacin or SQ29548. When the nitric oxide production was inhibited by L-nitroarginine methyl ester, acetylcholine (ACh) induced a endothelium-dependent contraction that was greater in 1K,1C-GBH rats than in WKY rats. Endothelium-dependent contraction by ACh was completely abolished by indomethacin or SQ29548. However, imidazole, tranylcypromine and superoxide dismutase did not affect the endothelium-dependent contraction in 1K,1C-GBH rats. These results suggest that impaired endothelium-dependent relaxation in the 1K,1C-GBH rats might be due to the simultaneous release of EDCF, and that prostaglandin B2 may be involved as a mediator of endothelium-dependent contraction.

  • PDF

Effect of Preconditioning Ischemia on Endothelial Dysfunction Produced by Ischemia-Reperfusion in Rabbit Coronary Artery

  • Suh, Suk-Hyo;Park, Yee-Tae;Kim, Woong-Heum;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.51-59
    • /
    • 1995
  • This study was designed to test whether or not 1) ischemia-reperfusion attenuates endothelium-dependent relaxation of coronary arteries and 2) preconditioning protects the arterial endothelium from ischemia-reperfusion injury. In anesthetized open chest rabbits, branches of the left circumflex artery were exposed to different combinations of the experimental conditions; ischemia (15 minutes), ischemia (15 minutes)-reperfusion (10 minutes), preconditioning ischemia, and pre-conditioning fellowed by ischemia-reperfusion. Preconditioning consisted of 3 occlusions of 2-min duration, each followed by n 5-min reperfusion. Rings of the artery exposed to the experimental condition and of normal left anterior descending coronary artery were prepared and suspended for isometric force measurement in organ chambers containing Krebs Ringer bicarbonate solution. The rings were contracted with 29.6 mM KCI. Ischemia alone did not attenuate endothelium-dependent relaxation by acetylcholine. However, ischemia-reperfusion significantly impaired endothelium-dependent relaxation. Endothelium-independent relaxation by sodium nitroprusside was not impaired by ischemia-reperfusion and the constrictive response to acetylcholine was not altered in reperfused rings without endothelium, compared with control rings. Arterial rings exposed to preconditioning followed by ischemia-reperfusion exhibited impaired endothelium-dependent relaxation by acetyl-choline. However, although preconditioning not fellowed by ischemia-reperfusion, attenuated endothelium-dependent relaxation at low concentrations of acetylcholine, the magnitude of the impairment by preconditioning followed by ischemia-reperfusion was significantly less than that of the impairment by ischemia-reperfusion alone. These data demonstrate that ischemia-reperfusion significantly attenuates endothelium-dependent relaxation by producing endothelial dysfunction and preconditioning Protects the endothelium of coronary arteries from ischemia-reperfusion injury.

  • PDF

흰쥐에서 혈관내피 의존적인 혈관이완과 혈압하강에 대한 propofol의 억제 효과 (Inhibitory effect of propofol on endothelium-dependent relaxation and blood pressure lowering in rats)

  • 김상진;김정곤;조성건;강형섭;김진상
    • 대한수의학회지
    • /
    • 제44권3호
    • /
    • pp.357-366
    • /
    • 2004
  • We studied the effect of propofol (PPF) on the endothelium-dependent vascular responses in isolated rat thoracic aorta. In aortic rings with endothelium, PPF inhibited the phenylephrine (PE)-induced contraction in a concentration-dependent manner. In PE-precontracted preparations, PPF attenuated the endothelium-dependent relaxation by acetylcholine but not by A23187. And PPF did not attenuate the endothelium-independent relaxation by sodium nitroprusside (SNP). The relaxation induced by acetylcholine in PE-precontracted aortic rings was significantly augmented by zaprinast, a cGMP-specific phosphodiesterase inhibitor, and this augmentation was inhibited by PPF. Although SNP-induced relaxation was significantly augmented by zaprinast, this augmentation was not inhibited by PPF. In preparations preconstricted with PE, the PPF-induced relaxation was inhibited by atropine. In addition, PPF attenuated the vasorelaxation by phosphodiesterase inhibitors (IBMX, Ro20-1724 or zaprinast except milrinone). In vivo, the infusion of acetylcholine and SNP showed decreased arterial blood pressure in rats. The pre-injection of PPF inhibited the acetylcholine-induced blood pressure lowering, but not the SNP-induced blood pressure lowering. These results suggest that PPF can attenuate in part the acetylcholine-induced vasorelaxation and blood pressure lowering through the inhibition of the acetylcholine receptor-mediated endothelium-derived relaxing factor by acting on endothelium. It is considered that the inhibitory effect of PPF on the vasorelaxation is due to the decreased level of cGMP which can be attributed to the inhibition of the muscarinic receptor and/or receptor-G-protein interaction.

Differential role of endothelium in hawthorn fruit extract-induced relaxation of rat cerebral, coronary, carotid, and aorta

  • Chan, Hoi Yun;Chen, Zhen-Yu;Yao, Xiaoqiang;Lau, Chi-Wai;Zhang, ZeSeng;Ho, Walter Kwok Keung;Huang, Yu
    • Advances in Traditional Medicine
    • /
    • 제2권2호
    • /
    • pp.87-93
    • /
    • 2002
  • The present study was aimed to examine the role of endothelium in the relaxant effect of hawthorn fruit extract of Crataegus pinnatifida in four different types of rat arteries, posterior cerebral communicating artery, right descending coronary artery, common carotid artery, and aorta. In $9,11-dideoxy-11{\alpha}$, $9{\alpha}-epoxy-methanoprostaglandin$ $F_{2{\alpha}}$ (U46619)-preconstricted arterial rings except for aorta, the extract produced endothelium-independent relaxations with similar potency. This relaxation was unaffected by pretreatment with $100\;{\mu}M\;N^G-nitro-L-arginine$ methylester (L-NAME, the nitric oxide synthase inhibitor), $3\;{\mu}M$ 1H-[l,2,4]oxadiazolo$[4,2-{\alpha}]$quinoxalin-1-one (ODQ, the guanylate cyclase inhibitor), or $10\;{\mu}M$ indomethacin (the cyclooxygenase inhibitor). Putative $K^+$ channel blockers (charybdotoxin plus apamin or glibenclamide) did not affect the extract-induced relaxation in cerebral or coronary artery rings. In contrast, in rat aortic rings the extract produced significantly smaller relaxant response in endothelium-denuded rings than that in endothelium-intact rings. Pretreatment with L-NAME or ODQ abolished the extractinduced endothelium-dependent aortic relaxation, whilst indomethacin $(3\;{\mu}M)$ had no effect. The present results indicate that hawthorn fruit extract possesses a vasorelaxing effect in cerebral, coronary and carotid arteries and this effect is independent of the presence of a functional endothelium. However, the extract-induced endothelium-dependent relaxation in rat aorta was mediated through endothelial nitric oxide and cyclic GMP-dependent mechanisms, suggesting that active components in the extract may act on endothelium to stimulate release of nitric oxide in large conduit arteries of the rats.

Role of $Na^+\;-K^+$ Pump on Endothelium-dependent Relaxation

  • Sung, Sang-Hyun;Roh, Joon-Ryang;Park, Tae-Sic;Suh, Suk-Hyo;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제27권2호
    • /
    • pp.199-207
    • /
    • 1993
  • To study the underlying mechanism through which the endothelium-dependent relaxation is inhibited by blocking the $Na^+\;-K^+$ pump, the effects of $Na^+\;-K^+$ pump blockade on the release of EDRF and its relaxing activity were examined, using organ bath study, bioassay technique, and cGMP measurement. Endothelium-dependent relaxation was attenuated by blocking the $Na^+\;-K^+$ pump in the vascular ring with intact endothelium. In bioassay experiment EDRF release was decreased with the blockade of the $Na^+\;-K^+$ pump in the EDRF donor strip. Endothelium-dependent increase of cGMP level was suppressed by inhibiting the $Na^+\;-K^+$ pump in the test strips. The magnitude of relaxation of test strip which was induced by the perfusate that had passed through the EDRF donor strip was decreased with the blockade of the $Na^+\;-K^+$ pump in the test strip. Therefore, it could be suggested that the attenuation of endothelium-dependent relaxation caused by inhibiting $Na^+\;-K^+$ pump activity is due to both the decreased release of EDRF from endothelial cells and the decreased sensitivity of the smooth muscle cells to EDRF.

  • PDF

Impaired Endothelium-Dependent Relaxation is Mediated by Reduced Production of Nitric Oxide in the Streptozotocin-Induced Diabetic Rats

  • Park, Kyoung-Sook;Kim, Cuk-Seong;Kang, Sang-Won;Park, Jin-Bong;Kim, Kwang-Jin;Chang, Seok-Jong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.263-270
    • /
    • 2000
  • To evaluate the involvement of nitric oxide production on the endothelium-dependent relaxation in diabetes, we have measured vascular and endothelial function and nitric oxide concentration, and the expression level of endothelial nitric oxide synthase in the streptozotocin-induced diabetic rats. Diabetic rats were induced by the injection of streptozotocin (50 mg/kg i.v.) in the Sprague-Dawley rats. Vasoconstrictor responses to norepinephrine (NE) showed that maximal contraction to norepinephrine $(10^{-5}\;M)$ was significantly enhanced in the aorta of diabetic rats. Endothelium-dependent relaxation induced by acetylcholine was markedly impaired in the aorta of diabetic rats, these responses were little improved by the pretreatment with indomethacin. However, endothelium-independent relaxation induced by nitroprusside was not altered in the diabetic rats. Plasma nitrite and nitrate $(NO_2/_3)$ levels in diabetic rats were significantly lower than in non-diabetic rats. Western blot analysis using a monoclonal antibody against endothelial cell nitric oxide synthase (eNOS) revealed that the protein level was lower in the aorta of diabetic rats than in non-diabetic rats. These data indicate that nitric oxide formation and eNOS expression is reduced in diabetes, and this would, in part, account for the impaired endothelium-dependent relaxation in the aorta of streptozotocin-induced diabetic rats.

  • PDF

Ginsenosides Evoke Vasorelaxation in Rat Aortic Rings: Involvement of $Ca^{2+}$-dependent $K^+$ Channels

  • Nak Doo Kim;Soo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.182-189
    • /
    • 1998
  • Administration of ginsenosides, a mixture of saponin extracted from Panax ginseng, decreased blood pressure in rat. Previous studies have shown that ginsenosides caused endothelium-dependent relaxation, which was associated with the formation of cyclic GMP, suggested that ginsenosides caused release of nitric oxide (NO) from the vascular endothelium. The aim of the present study was to characterize the endothelium-independent relaxation to ginsenosides in the isolated rat aorta. Ginsenosides caused a concentration-dependent relaxation of rat aortic rings without endothelium constricted with 25 mM KCI but affected only minimally those constricted with 60 mM KCI. Ginsenoside Rg3 (Rg3) was a more potent vasorelaxing agonist than total ginsenoside mixture and also the ginsenoside PPT and PPD groups. Relaxation to ginsenosides were markedly reduced by TEA, but not by glibenclamide. Rg3 significantly inhibited Cal'-induced concentration-contraction curves and the "50a2'influx in aortic rings incubated in 25 mM KCI whereas those responses were not affected in 60 mM KCI. Rg3 caused efflux of $"Rb in aortic rings that was inhibited by tetraethy- lammonium (TEA), an inhibitor of Ca"-dependent K'channels, but not by glibenclamide, an inhibitor of AfP-dependent K'channels. These findings indicate that ginsenosides may induce vasorelaxation via activation of Ca2'-dependent K'channels resulting in hyperpolarization of the vas- cular smooth muscle with subsequent inhibition of the opening of voltage-dependent Caf'channels. These effects could contribute to explain the red ginseng-associated vasodilation and the beneficial effect on the cardiovascular system.

  • PDF

Effects of cGMP on the Contractility and Ca Movement in the Aorta of Normotensive Wistar-Kyoto Rats and Spontaneously Hypertensive Rats

  • Park, Hae-Kun;Jeon, Byeong-Hwa;Kim, Se-Hoon;Kim, Hoe-Suk;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.181-190
    • /
    • 1994
  • Endothelium-derived relaxing factor (EDRF) activates guanylate cyclase which mediates the formation of cGMP from GTP in vascular smooth muscle. It is well known that endothelium-dependent relaxation is impaired in spontaneously hypertensive rats (SHR). However, it is still unknown whether the impaired endothelium-dependent relaxation in SHR results from the reduced release of EDRF or from the decrease of vascular response to EDRF. We investigated the effects of cGMP on the contractility and Ca movement in the aorta of SHR and Wistar-Kyoto rats (WKY). The amplitude of the endothelium-dependent relaxation to actylcholine (ACh) was significantly less in SHR than in WKY. L-arginine $(10^{-3}M)$ did not increase endothelium-dependent relaxation in both strains. Sodium nitroprusside (SNP), an activator of guanylate cyclase, relaxed the 40 mM $K^+-induced$ contraction in a dose-dependent manner $(10^{-10}{\sim}10^{-6}\;M)$ in the endothelium-rubbed aortic strips of both strains. However, there was no significant difference in these relaxations between WKY and SHR. 8-bromo-cyclic guanosine monophosphate (8-Br-cGMP), a cell membrane-permeable derivative of cGMP relaxed the 40 mM $K^+-induced$ contraction in a dose-dependent manner $(10^{-6}{\sim}10^{-4}\;M)$ in the endothelium-rubbed aortic strips of both strains. Also norepinephrine $(10^{-6}\;M)-induced$ contractions in normal and Ca-free Tyrode's solution were suppressed by the pretreatment with 8-Br-cGMP $(10^{-4}\;M)$ in either strain. However, the amplitudes of suppression induced by 8-Br-cGMP were greater in SHR than that in WKY. Basal $^{45}Ca$ uptake and 40mM $K^+-stimulated\;^{45}Ca$ uptake were not suppressed by pretreatment with 8-Br-cGMP $(10^{-4}\;M)$ in single aortic smooth muscle cells of both SHR and WKY. From the above results, it is suggested that cGMP decreases Ca sensitivity in vascular smooth muscle cells and that the impaired endothelium-dependent relaxation in the aortic strips of SHR is not the result of a reduced vascular response to EDRF.

  • PDF

희렴이 가토(家兎)의 혈관내피세포성(血管內皮細胞性) 이완인자(弛緩因子)에 미치는 영향(影響) (The Effects of Siegesbeckiae Herba on EDRF in the Carotid Artery of the Rabbit)

  • 김호현;김길훤
    • 대한한의학회지
    • /
    • 제18권2호
    • /
    • pp.15-32
    • /
    • 1997
  • This study was undertaken to define the mechanism of Siegesbeckiae Herba-induced relaxation in rabbit common carotid artery contracted by agonists. In order to investigate the effect of Siegesbeckiae Herba on contracted rabbit carotid arterial strips, transverse strips with intact or damaged endothelium were used for the experiment using organ bath. To analyze the mechanism of Siegesbeckiae Herba-induced relaxation, Siegesbeckiae Herba extract infused into contracted arterial strips induced by agonists after treatment of lanthanum chloride, indomethacin, atropine, $N\omega-nitro-{_L}-arginine$, cobalt chloride or methylene blue. The relaxation effect of Siegesbeckiae Herba was dependent on the presence of endothelium, showing that Siegesbeckiae Herba-induced relaxation was not observed in the strips without endothelium. The endothelium-dependent relaxation induced by Siegesbeckiae Herba was suppressed by the pretreatment of lanthanum chloride, $N\omega-nitro-{_L}-arginine$, cobalt chloride or methylene blue, but it was not observed in the strips pretreated with indomethacin or atropine. These results demonstrated that Siegesbeckiae Herba may inhibit agonist-induced contraction through an increase in the cyclic GMP by the production of nitric oxide in the vascular endothelial cells.

  • PDF

Red Ginseng Saponin Fraction A Isolated from Korean Red Ginseng by Ultrafiltration on the Porcine Coronary Artery

  • Jung, Young-Hyun;Park, Kwang-Yeol;Jeon, Jin-Hong;Kwak, Yi-Seong;Song, Yong-Bum;Wee, Jae-Joon;Rhee, Man-Hee;Kim, Tae-Wan
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.325-330
    • /
    • 2011
  • Red ginseng saponin fraction-A (RGSF-A) contains a high percentage of panaxadiol saponins that were isolated from Korean red ginseng by ultrafiltration. The aim of this study was to elucidate the effects of RGSF-A on the porcine distal left anterior descending (LAD) coronary artery. The relaxant responses to RGSF-A were examined during contractions induced by 100 nM U46619 (9,11-dideoxy-9a,11a-methanoepoxy-prostaglandin F2a), a stable analogue of thromboxane A2. RGSF-A dose-dependently induced biphasic (fast- and slow-) relaxation in the distal LAD coronary artery in the presence of an intact endothelium. The fast-relaxation was quickly achieved in a minute, and then the slow-relaxation was slowly developed and sustained for more than thirty minutes after the administration of RGSF-A. The slow-relaxation had a tendency to be bigger than the fast-relaxation. Fast relaxation induced by RGSF-A was almost blocked by $N_{\omega}$-Nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase synthase inhibitor and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor. However slow relaxation induced by RGSF-A was only partially inhibited by L-NAME and ODQ. In the endothelium-removed ring, RGSF-A evoked only slowrelaxation to a certain extent. These data suggest that RGSF-A induced both endothelium dependent fast- and slow-relaxation and endothelium independent slow-relaxation in the porcine distal LAD coronary artery. The endothelium dependent fast-relaxation is mediated by the nitric oxide (NO)-cGMP pathway, and the endothelium dependent slow-relaxation is at least partially mediated by the NO-cGMP pathway. However, the endothelium-independent slow-relaxation remains to be elucidated.