• 제목/요약/키워드: Endothelial function

검색결과 251건 처리시간 0.029초

Inhibitory Effect of Genistein on Agonist-Induced Modulation of Vascular Contractility

  • Je, Hyun Dong;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.191-198
    • /
    • 2009
  • The present study was undertaken to determine whether treatment with genistein, the plant-derived estrogen-like compound influences agonist-induced vascular smooth muscle contraction and, if so, to investigate related mechanisms. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Genistein completely inhibited KCl-, phorbol ester-, phenylephrine-, fluoride- and thromboxane $A_2$-induced contractions. An inactive analogue, daidzein, completely inhibited only fluoride-induced contraction regardless of endothelial function, suggesting some difference between the mechanisms of RhoA/Rho-kinase activators such as fluoride and thromboxane $A_2$. Furthermore, genistein and daidzein each significantly decreased phosphorylation of MYPT1 at Thr855 had been induced by a thromboxane $A_2$ mimetic. Interestingly, iberiotoxin, a blocker of large-conductance calcium-activated potassium channels, did not inhibit the relaxation response to genistein or daidzein in denuded aortic rings precontracted with fluoride. In conclusion, genistein or daidzein elicit similar relaxing responses in fluoride-induced contractions, regardless of tyrosine kinase inhibition or endothelial function, and the relaxation caused by genistein or daidzein was not antagonized by large conductance $K_{Ca}$-channel inhibitors in the denuded muscle. This suggests that the RhoA/Rho-kinase pathway rather than $K^+$- channels are involved in the genistein-induced vasodilation. In addition, based on molecular and physiological results, only one vasoconstrictor fluoride seems to be a full RhoA/Rho-kinase activator; the others are partial activators.

Isoflavonoids에 의한 혈관이완효과에 있어 Rho-kinase의 역할 (Vasorelaxing Effect of Isoflavonoids Via Rho-kinase Inhibition in Agonist-Induced Vasoconstriction)

  • 제현동
    • 약학회지
    • /
    • 제50권4호
    • /
    • pp.293-299
    • /
    • 2006
  • The aim of present study was to investigate the possible influence of Rho-kinase inhibition on the plant-derived estrogen-like compounds-induced arterial relaxation. Agonist- or depolarization-induced vascular smooth muscle contractions involve the activation of Rho-kinase pathway. However there are no reports addressing the question whether this pathway is involved in genistein-or daidzein-induced vascular relaxation in rat aortae precontracted with phenylephrine or thromboxane $A_2$ mimetic U-46619. We hypothesized that Rho-kinase inhibition plays a role in vascular relaxation evoked by genistein or daidzein in rat aortae. Endothelium-intact and denuded arterial rings from male Sprague-Dawley rats were used and isometric contractions were recorded using a computerized data acquisition system. Genistein concentration-dependently inhibited phenylephrine or thromboxane $A_2-induced$ contraction regardless of endothelial function. Surprisingly, in the agonists-induced contraction, similar results were also observed in aortae treated with daidzein, the inactive congener for protein tyrosine kinase inhibition, suggesting that Rho-kinase might act upstream of tyrosine kinases in phenylephrine-induced contraction. In conclusion, in the agonists-precontracted rat aortae, genistein and daidzein showed similar relaxant response regardless of tyrosine kinase inhibition or endothelial function.

Vascular endothelial dysfunction after anthracyclines treatment in children with acute lymphoblastic leukemia

  • Jang, Woo Jung;Choi, Duk Yong;Jeon, In-Sang
    • Clinical and Experimental Pediatrics
    • /
    • 제56권3호
    • /
    • pp.130-134
    • /
    • 2013
  • Purpose: Anthracyclines have been utilized in the treatment of children with acute lymphoblastic leukemia (ALL). Recent studies have shown that anthracyclines may induce toxicity in the vascular endothelium. This study was performed using brachial artery reactivity (BAR) to evaluate vascular endothelial function in ALL patients who were treated with anthracycline chemotherapy. Methods: We included 21 children with ALL who received anthracycline chemotherapy and 20 healthy children. The cumulative dose of anthracyclines in the ALL patients was $142.5{\pm}18.2/m^2$. The last anthracycline dose was administered to the patients 2 to 85 months prior to their examination using BAR. The diameter of the brachial artery was measured in both groups using echocardiography, and BAR was calculated as the percentage change in the arterial diameter after release of the cuff relative to the baseline vessel diameter. Results: In the anthracycline-treated group, BAR was observed to be $3.4%{\pm}3.9%$, which was significantly lower than that observed in the control group ($12.1%{\pm}8.0%$, P<0.05). The time elapsed after the last anthracycline treatment and the age at the time of treatment did not affect the change in BAR (P =0.06 and P =0.13, respectively). Conclusion: These results provided evidence that treatment of ALL patients with anthracycline results in endothelial dysfunction. A larger cohort study and a longer follow-up period will be required to clarify the relationship between endothelial dysfunction resulting from anthracycline treatment for childhood ALL and occurrence of cardiovascular diseases later in life.

Impaired Endothelium-Dependent Relaxation is Mediated by Reduced Production of Nitric Oxide in the Streptozotocin-Induced Diabetic Rats

  • Park, Kyoung-Sook;Kim, Cuk-Seong;Kang, Sang-Won;Park, Jin-Bong;Kim, Kwang-Jin;Chang, Seok-Jong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.263-270
    • /
    • 2000
  • To evaluate the involvement of nitric oxide production on the endothelium-dependent relaxation in diabetes, we have measured vascular and endothelial function and nitric oxide concentration, and the expression level of endothelial nitric oxide synthase in the streptozotocin-induced diabetic rats. Diabetic rats were induced by the injection of streptozotocin (50 mg/kg i.v.) in the Sprague-Dawley rats. Vasoconstrictor responses to norepinephrine (NE) showed that maximal contraction to norepinephrine $(10^{-5}\;M)$ was significantly enhanced in the aorta of diabetic rats. Endothelium-dependent relaxation induced by acetylcholine was markedly impaired in the aorta of diabetic rats, these responses were little improved by the pretreatment with indomethacin. However, endothelium-independent relaxation induced by nitroprusside was not altered in the diabetic rats. Plasma nitrite and nitrate $(NO_2/_3)$ levels in diabetic rats were significantly lower than in non-diabetic rats. Western blot analysis using a monoclonal antibody against endothelial cell nitric oxide synthase (eNOS) revealed that the protein level was lower in the aorta of diabetic rats than in non-diabetic rats. These data indicate that nitric oxide formation and eNOS expression is reduced in diabetes, and this would, in part, account for the impaired endothelium-dependent relaxation in the aorta of streptozotocin-induced diabetic rats.

  • PDF

Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

  • Seo, Youngsik;Cho, Young-Sik;Huh, Young-Duk;Park, Heonyong
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.195-203
    • /
    • 2016
  • Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions ($Cu^+$ and $Cu^{2+}$), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped $Cu_2O$ and CuO crystals were prepared to test the role of the two different ions, $Cu^+$ and $Cu^{2+}$, respectively. The $Cu_2O$ crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The $Cu_2O$ crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. $Cu_2O$ crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit $Cu_2O$-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of $Cu^+$ ions in the vascular system, where $Cu^+$ induces autophagy while $Cu^{2+}$ has no detected effect.

Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway

  • Choi, Sujeong;Kwon, Hyon-Jo;Song, Hee-Jung;Choi, Si Wan;Nagar, Harsha;Piao, Shuyu;Jung, Saet-byel;Jeon, Byeong Hwa;Kim, Dong Woon;Kim, Cuk-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권5호
    • /
    • pp.539-545
    • /
    • 2016
  • Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function.

The Changes of P-glycoprotein Activity by Interferon-γ and Tumor Necrosis Factor-α in Primary and Immortalized Human Brain Microvascular Endothelial Cells

  • Lee, Na-Young;Rieckmann, Peter;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.293-298
    • /
    • 2012
  • The purpose of this study was to investigate the modification of expression and functionality of the drug transporter P-glycoprotein (P-gp) by tumor necrosis factor-alpha (TNF-${\alpha}$) and interferon-gamma (IFN-${\gamma}$) at the blood-brain barrier (BBB). We used immortalized human brain microvessel endothelial cells (iHBMEC) and primary human brain microvessel endothelial cells (pHBMEC) as in vitro BBB model. To investigate the change of p-gp expression, we carried out real time PCR analysis and Western blotting. To test the change of p-gp activity, we performed rhodamin123 (Rh123) accumulation study in the cells. In results of real time PCR analysis, the P-gp mRNA expression was increased by TNF-${\alpha}$ or IFN-${\gamma}$ treatment for 24 hr in both cell types. However, 48 hr treatment of TNF-${\alpha}$ or IFN-${\gamma}$ did not affect P-gp mRNA expression. In addition, co-treatment of TNF-${\alpha}$ and IFN-${\gamma}$ markedly increased the P-gp mRNA expression in both cells. TNF-${\alpha}$ or IFN-${\gamma}$ did not influence P-gp protein expression whatever the concentration of cytokines or duration of treatment in both cells. However, P-gp expression was increased after treatments of both cytokines together in iHBMEC cells only compared with untreated control. Furthermore, in both cell lines, TNF-${\alpha}$ or IFN-${\gamma}$ induced significant decrease of P-gp activity for 24 hr treatment. And, both cytokines combination treatment also decreased significantly P-gp activity. These results suggest that P-gp expression and function at the BBB is modulated by TNF-${\alpha}$ or/and IFN-${\gamma}$. Therefore, the distribution of P-gp depending drugs in the central nervous system can be modulated by neurological inflammatory diseases.

A Novel Role of Hyaluronic Acid and Proteoglycan Link Protein 1 (HAPLN1) in Delaying Vascular Endothelial Cell Senescence

  • Dan Zhou;Ji Min Jang;Goowon Yang;Hae Chan Ha;Zhicheng Fu;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.629-639
    • /
    • 2023
  • Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also downregulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.

The Inhibitory Effect of Eupatilin on the Agonist-Induced Regulation of Vascular Contractility

  • Je, Hyun Dong;Kim, Hyeong-Dong;Jeong, Ji Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.31-36
    • /
    • 2013
  • The present study was undertaken to investigate the influence of eupatilin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Eupatilin more significantly relaxed fluoride-induced vascular contraction than thromboxane $A_2$ or phorbol ester-induced contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, eupatilin significantly inhibited fluoride-induced increases in pMYPT1 levels. On the other hand, it didn't significantly inhibit phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the primarily inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1. This study provides evidence regarding the mechanism underlying the relaxation effect of eupatilin on agonist-induced vascular contraction regardless of endothelial function.

Blood-neural barrier: its diversity and coordinated cell-to-cell communication

  • Choi, Yoon-Kyung;Kim, Kyu-Won
    • BMB Reports
    • /
    • 제41권5호
    • /
    • pp.345-352
    • /
    • 2008
  • The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.